These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 30813266)
21. Flow-stream waveguide for collection of perpendicular light scatter in flow cytometry. Mariella R; van den Engh G; Masquelier D; Eveleth G Cytometry; 1996 May; 24(1):27-31. PubMed ID: 8723899 [TBL] [Abstract][Full Text] [Related]
22. A Dew-Condensation Sensor Exploiting Local Variations in the Relative Refractive Index on the Dew-Friendly Surface of a Waveguide. Hwa S; Sim ES; Na JH; Jang IH; Kwon JH; Kim MH Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905059 [TBL] [Abstract][Full Text] [Related]
23. A magnetic nanocomposite for biomimetic flow sensing. Alfadhel A; Li B; Zaher A; Yassine O; Kosel J Lab Chip; 2014 Nov; 14(22):4362-9. PubMed ID: 25227205 [TBL] [Abstract][Full Text] [Related]
24. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Huang Y; Min C; Dastmalchi P; Veronis G Opt Express; 2015 Jun; 23(11):14922-36. PubMed ID: 26072849 [TBL] [Abstract][Full Text] [Related]
25. Drag force acting on a neuromast in the fish lateral line trunk canal. II. Analytical modelling of parameter dependencies. Humphrey JA J R Soc Interface; 2009 Jul; 6(36):641-53. PubMed ID: 18926966 [TBL] [Abstract][Full Text] [Related]
26. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides. Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406 [TBL] [Abstract][Full Text] [Related]
27. Development of a microfabricated optical bend loss sensor for distributive pressure measurement. Wang WC; Ledoux WR; Huang CY; Huang CS; Klute GK; Reinhall PG IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):614-25. PubMed ID: 18269997 [TBL] [Abstract][Full Text] [Related]
28. Chemical-assisted femtosecond laser writing of lab-in-fibers. Haque M; Lee KK; Ho S; Fernandes LA; Herman PR Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138 [TBL] [Abstract][Full Text] [Related]
29. Transparent and flexible force sensor array based on optical waveguide. Kim Y; Park S; Park SK; Yun S; Kyung KU; Sun K Opt Express; 2012 Jun; 20(13):14486-93. PubMed ID: 22714510 [TBL] [Abstract][Full Text] [Related]
30. Self-referenced antiresonant reflecting guidance mechanism for directional bending sensing with low temperature and strain crosstalk. Gao R; Lu D; Cheng J; Qi ZM Opt Express; 2017 Jul; 25(15):18081-18091. PubMed ID: 28789298 [TBL] [Abstract][Full Text] [Related]
31. Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement. Yang B; Hu D; Wu L Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399716 [TBL] [Abstract][Full Text] [Related]
32. Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors. Kottapalli AGP; Bora M; Kanhere E; Asadnia M; Miao J; Triantafyllou MS Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28788059 [TBL] [Abstract][Full Text] [Related]
33. A Study of Wave Confinement and Optical Force in Polydimethlysiloxane-Arylazopyrazole Composite for Photonic Applications. Uba I; Geddis D; Ghebreyessus K; Hömmerich U; Dumas J Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267719 [TBL] [Abstract][Full Text] [Related]
34. A miniaturized fiber-optic colorimetric sensor for nitrite determination by coupling with a microfluidic capillary waveguide. Xiong Y; Wang CJ; Tao T; Duan M; Fang SW; Zheng M Anal Bioanal Chem; 2016 May; 408(13):3413-23. PubMed ID: 26939671 [TBL] [Abstract][Full Text] [Related]
35. The flexural stiffness of superficial neuromasts in the zebrafish (Danio rerio) lateral line. McHenry MJ; van Netten SM J Exp Biol; 2007 Dec; 210(Pt 23):4244-53. PubMed ID: 18025022 [TBL] [Abstract][Full Text] [Related]
36. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Zhu Z; Liu L; Liu Z; Zhang Y; Zhang Y Opt Lett; 2017 Aug; 42(15):2948-2951. PubMed ID: 28957216 [TBL] [Abstract][Full Text] [Related]
37. Topography and mechanics of the cupula in the fish lateral line. I. Variation of cupular structure and composition in three dimensions. Kelly JP; van Netten SM J Morphol; 1991 Jan; 207(1):23-36. PubMed ID: 1671882 [TBL] [Abstract][Full Text] [Related]
38. Surface-Plasmon-Resonance-Based Optical-Fiber Micro-Displacement Sensor with Temperature Compensation. Wei Y; Wu P; Zhu Z; Liu L; Liu C; Hu J; Wang S; Zhang Y Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249035 [TBL] [Abstract][Full Text] [Related]
39. What We Can Learn from Artificial Lateral Line Sensor Arrays. Klein AT; Kaldenbach F; Rüter A; Bleckmann H Adv Exp Med Biol; 2016; 875():539-45. PubMed ID: 26611002 [TBL] [Abstract][Full Text] [Related]
40. High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials. Xu Y; Chen X; Zhu Y Sensors (Basel); 2008 Mar; 8(3):1872-1878. PubMed ID: 27879798 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]