These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30813296)

  • 1. Nondestructive Classification Analysis of Green Coffee Beans by Using Near-Infrared Spectroscopy.
    Okubo N; Kurata Y
    Foods; 2019 Feb; 8(2):. PubMed ID: 30813296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of green coffee beans quality using near infrared spectroscopy: a quantitative approach.
    Santos JR; Sarraguça MC; Rangel AO; Lopes JA
    Food Chem; 2012 Dec; 135(3):1828-35. PubMed ID: 22953929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of coffee leaves using FT-NIR spectroscopy and SIMCA.
    Mees C; Souard F; Delporte C; Deconinck E; Stoffelen P; Stévigny C; Kauffmann JM; De Braekeleer K
    Talanta; 2018 Jan; 177():4-11. PubMed ID: 29108581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans.
    Tolessa K; Rademaker M; De Baets B; Boeckx P
    Talanta; 2016 Apr; 150():367-74. PubMed ID: 26838420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Qualitative and quantitative analysis of ochratoxin A contamination in green coffee beans using Fourier transform near infrared spectroscopy.
    Taradolsirithitikul P; Sirisomboon P; Dachoupakan Sirisomboon C
    J Sci Food Agric; 2017 Mar; 97(4):1260-1266. PubMed ID: 27324609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Optimization of a Developed Near-Infrared Spectrometer Using Calibration Transfer with a Variety of Transfer Samples for Geographical Origin Identification of Coffee Beans.
    Phuangsaijai N; Theanjumpol P; Kittiwachana S
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews.
    Barbosa MSG; Scholz MBDS; Kitzberger CSG; Benassi MT
    Food Chem; 2019 Sep; 292():275-280. PubMed ID: 31054676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging.
    Caporaso N; Whitworth MB; Grebby S; Fisk ID
    J Food Eng; 2018 Jun; 227():18-29. PubMed ID: 29861528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous quantification of caffeine and chlorogenic acid in coffee green beans and varietal classification of the samples by HPLC-DAD coupled with chemometrics.
    De Luca S; Ciotoli E; Biancolillo A; Bucci R; Magrì AD; Marini F
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):28748-28759. PubMed ID: 29430598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in caffeine concentration in single coffee beans.
    Fox GP; Wu A; Yiran L; Force L
    J Agric Food Chem; 2013 Nov; 61(45):10772-8. PubMed ID: 24070227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-class classification of special agroforestry Brazilian coffee using NIR spectrometry and chemometric tools.
    Manuel MNB; da Silva AC; Lopes GS; Ribeiro LPD
    Food Chem; 2022 Jan; 366():130480. PubMed ID: 34284192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging.
    Caporaso N; Whitworth MB; Grebby S; Fisk ID
    Food Res Int; 2018 Apr; 106():193-203. PubMed ID: 29579918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of microstructural properties of coffee beans by synchrotron X-ray microtomography: a methodological approach.
    Pittia P; Sacchetti G; Mancini L; Voltolini M; Sodini N; Tromba G; Zanini F
    J Food Sci; 2011 Mar; 76(2):E222-31. PubMed ID: 21535762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production.
    De Bruyn F; Zhang SJ; Pothakos V; Torres J; Lambot C; Moroni AV; Callanan M; Sybesma W; Weckx S; De Vuyst L
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27793826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Multi-Element Analysis with Statistical Modeling for Tracing the Origin of Green Coffee Beans from Amhara Region, Ethiopia.
    Endaye M; Atlabachew M; Mehari B; Alemayehu M; Mengistu DA; Kerisew B
    Biol Trace Elem Res; 2020 Jun; 195(2):669-678. PubMed ID: 31418150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of multivariate classification models between laboratory and process near-infrared spectrometers for the discrimination of green Arabica and Robusta coffee beans.
    Myles AJ; Zimmerman TA; Brown SD
    Appl Spectrosc; 2006 Oct; 60(10):1198-203. PubMed ID: 17059674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of structurally related commercial contrast media by near infrared spectroscopy.
    Yip WL; Soosainather TC; Dyrstad K; Sande SA
    J Pharm Biomed Anal; 2014 Mar; 90():148-60. PubMed ID: 24374816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of Rice Varieties Using SIMCA Applied to NIR Spectroscopic Data.
    Shi G; Zhang X; Qu G; Chen Z
    ACS Omega; 2022 Dec; 7(50):46623-46628. PubMed ID: 36570259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New fluorescence spectroscopic method for the simultaneous determination of alkaloids in aqueous extract of green coffee beans.
    Yisak H; Redi-Abshiro M; Chandravanshi BS
    Chem Cent J; 2018 May; 12(1):59. PubMed ID: 29748893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of new analytical methods for the determination of caffeine content in aqueous solution of green coffee beans.
    Weldegebreal B; Redi-Abshiro M; Chandravanshi BS
    Chem Cent J; 2017 Dec; 11(1):126. PubMed ID: 29209861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.