These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 30813891)

  • 1. The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development.
    Doroshkov AV; Konstantinov DK; Afonnikov DA; Gunbin KV
    BMC Plant Biol; 2019 Feb; 19(Suppl 1):53. PubMed ID: 30813891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative morphoanatomy and transcriptomic analyses reveal key factors controlling floral trichome development in Aristolochia (Aristolochiaceae).
    Suárez-Baron H; Alzate JF; Ambrose BA; Pelaz S; González F; Pabón-Mora N
    J Exp Bot; 2023 Nov; 74(21):6588-6607. PubMed ID: 37656729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Q&A: How do gene regulatory networks control environmental responses in plants?
    Sun Y; Dinneny JR
    BMC Biol; 2018 Apr; 16(1):38. PubMed ID: 29642893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana.
    Vadde BVL; Challa KR; Nath U
    Plant J; 2018 Jan; 93(2):259-269. PubMed ID: 29165850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis.
    Gao C; Li D; Jin C; Duan S; Qi S; Liu K; Wang H; Ma H; Hai J; Chen M
    Biochem Biophys Res Commun; 2017 Apr; 485(2):360-365. PubMed ID: 28216162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells.
    Hegebarth D; Buschhaus C; Wu M; Bird D; Jetter R
    Plant J; 2016 Dec; 88(5):762-774. PubMed ID: 27496682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COP9 signalosome subunit 5A affects phenylpropanoid metabolism, trichome formation and transcription of key genes of a regulatory tri-protein complex in Arabidopsis.
    Wei S; Li X; Gruber MY; Feyissa BA; Amyot L; Hannoufa A
    BMC Plant Biol; 2018 Jun; 18(1):134. PubMed ID: 29940863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and molecular analysis of trichome development in
    Chopra D; Mapar M; Stephan L; Albani MC; Deneer A; Coupland G; Willing EM; Schellmann S; Schneeberger K; Fleck C; Schrader A; Hülskamp M
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):12078-12083. PubMed ID: 31123146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seed Plant-Specific Gene Lineages Involved in Carpel Development.
    Pfannebecker KC; Lange M; Rupp O; Becker A
    Mol Biol Evol; 2017 Apr; 34(4):925-942. PubMed ID: 28087776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events.
    Gilding EK; Marks MD
    Plant J; 2010 Oct; 64(2):304-17. PubMed ID: 21070410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis.
    Zhang F; Liu X; Zhang A; Jiang Z; Chen L; Zhang X
    BMC Plant Biol; 2019 Jan; 19(1):11. PubMed ID: 30616516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect leaf development and trichome morphogenesis in Arabidopsis.
    Kotak J; Saisana M; Gegas V; Pechlivani N; Kaldis A; Papoutsoglou P; Makris A; Burns J; Kendig AL; Sheikh M; Kuschner CE; Whitney G; Caiola H; Doonan JH; Vlachonasios KE; McCain ER; Hark AT
    Planta; 2018 Sep; 248(3):613-628. PubMed ID: 29846775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between two timing microRNAs controls trichome distribution in Arabidopsis.
    Xue XY; Zhao B; Chao LM; Chen DY; Cui WR; Mao YB; Wang LJ; Chen XY
    PLoS Genet; 2014 Apr; 10(4):e1004266. PubMed ID: 24699192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana.
    Matías-Hernández L; Jiang W; Yang K; Tang K; Brodelius PE; Pelaz S
    Plant J; 2017 May; 90(3):520-534. PubMed ID: 28207974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis GLASSY HAIR genes promote trichome papillae development.
    Suo B; Seifert S; Kirik V
    J Exp Bot; 2013 Nov; 64(16):4981-91. PubMed ID: 24014871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hairy Canola (Brasssica napus) re-visited: Down-regulating TTG1 in an AtGL3-enhanced hairy leaf background improves growth, leaf trichome coverage, and metabolite gene expression diversity.
    Alahakoon UI; Taheri A; Nayidu NK; Epp D; Yu M; Parkin I; Hegedus D; Bonham-Smith P; Gruber MY
    BMC Plant Biol; 2016 Jan; 16():12. PubMed ID: 26739276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana.
    Wils CR; Kaufmann K
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):95-105. PubMed ID: 27487457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TEMPRANILLO Reveals the Mesophyll as Crucial for Epidermal Trichome Formation.
    Matías-Hernández L; Aguilar-Jaramillo AE; Osnato M; Weinstain R; Shani E; Suárez-López P; Pelaz S
    Plant Physiol; 2016 Mar; 170(3):1624-39. PubMed ID: 26802039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the Trichome Patterning Core Network Using Data from Weak ttg1 Alleles to Constrain the Model Space.
    Balkunde R; Deneer A; Bechtel H; Zhang B; Herberth S; Pesch M; Jaegle B; Fleck C; Hülskamp M
    Cell Rep; 2020 Dec; 33(11):108497. PubMed ID: 33326794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subtle interplay between trichome development and cuticle formation in plants.
    Berhin A; Nawrath C; Hachez C
    New Phytol; 2022 Mar; 233(5):2036-2046. PubMed ID: 34704619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.