BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30814000)

  • 1. Templated Assembly of Pore-forming Peptides in Lipid Membranes.
    Unwin AP; Hine PJ; Ward IM; Fujita M; Tanaka E; Gusev AA
    Chimia (Aarau); 2019 Feb; 73(1-2):59. PubMed ID: 30814000
    [No Abstract]   [Full Text] [Related]  

  • 2. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting specific membranes with an azide derivative of the pore-forming peptide ceratotoxin A.
    Mayer SF; Ducrey J; Dupasquier J; Haeni L; Rothen-Rutishauser B; Yang J; Fennouri A; Mayer M
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):183023. PubMed ID: 31325418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the Diameter, Stability, and Membrane Affinity of Peptide Pores by DNA-Programmed Self-Assembly.
    Fennouri A; List J; Ducrey J; Dupasquier J; Sukyte V; Mayer SF; Vargas RD; Pascual Fernandez L; Bertani F; Rodriguez Gonzalo S; Yang J; Mayer M
    ACS Nano; 2021 Jul; 15(7):11263-11275. PubMed ID: 34128638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigations of pore forming peptide assemblies in lipid bilayers.
    Frink LJ; Frischknecht AL
    Phys Rev Lett; 2006 Nov; 97(20):208701. PubMed ID: 17155725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of membrane lipids for the activity of pore forming peptides and proteins.
    Fuertes G; Giménez D; Esteban-Martin S; Garcia-Sáez A; Sánchez O; Salgado J
    Adv Exp Med Biol; 2010; 677():31-55. PubMed ID: 20687479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of alpha-helical transmembrane pores through an intermediate state.
    Puthumadathil N; Krishnan R S; Nair GS; Mahendran KR
    Nanoscale; 2022 May; 14(17):6507-6517. PubMed ID: 35420118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of mean force for insertion of antimicrobial peptide melittin into a pore in mixed DOPC/DOPG lipid bilayer by molecular dynamics simulation.
    Lyu Y; Xiang N; Zhu X; Narsimhan G
    J Chem Phys; 2017 Apr; 146(15):155101. PubMed ID: 28433027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Templated assembly of the pH-sensitive membrane-lytic peptide GALA.
    Haas DH; Murphy RM
    J Pept Res; 2004 Jun; 63(6):451-9. PubMed ID: 15175017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-lipid interactions and non-lamellar lipidic structures in membrane pore formation and membrane fusion.
    Gilbert RJ
    Biochim Biophys Acta; 2016 Mar; 1858(3):487-99. PubMed ID: 26654785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations.
    Aisenbrey C; Marquette A; Bechinger B
    Adv Exp Med Biol; 2019; 1117():33-64. PubMed ID: 30980352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-sheet pore-forming peptides selected from a rational combinatorial library: mechanism of pore formation in lipid vesicles and activity in biological membranes.
    Rausch JM; Marks JR; Rathinakumar R; Wimley WC
    Biochemistry; 2007 Oct; 46(43):12124-39. PubMed ID: 17918962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: A review.
    Bertrand B; Garduño-Juárez R; Munoz-Garay C
    Biochim Biophys Acta Biomembr; 2021 Apr; 1863(4):183551. PubMed ID: 33465367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-resolution Stimulated Emission Depletion-Fluorescence Correlation Spectroscopy Reveals Nanoscale Membrane Reorganization Induced by Pore-Forming Proteins.
    Sarangi NK; P II; Ayappa KG; Visweswariah SS; Basu JK
    Langmuir; 2016 Sep; 32(37):9649-57. PubMed ID: 27564541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy analysis of membrane pore formation process in the presence of multiple melittin peptides.
    Miyazaki Y; Okazaki S; Shinoda W
    Biochim Biophys Acta Biomembr; 2019 Jul; 1861(7):1409-1419. PubMed ID: 30885804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.