These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30814004)

  • 1. An Atomistic Look into Bio-inspired Nanoparticles and their Molecular Interactions with Cells.
    Petretto E; Campomanes P; Stellacci F; Rothen-Rutishauser B; Petri-Fink A; Vanni S
    Chimia (Aarau); 2019 Feb; 73(1-2):78-80. PubMed ID: 30814004
    [No Abstract]   [Full Text] [Related]  

  • 2. Coarse-grained molecular dynamics simulation for uptake of nanoparticles into a charged lipid vesicle dominated by electrostatic interactions.
    Shimokawa N; Ito H; Higuchi Y
    Phys Rev E; 2019 Jul; 100(1-1):012407. PubMed ID: 31499808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Core-Shell Approach for Systematically Coarsening Nanoparticle-Membrane Interactions: Application to Silver Nanoparticles.
    Singhal A; Sevink GJA
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: A computational study.
    Van Lehn RC; Alexander-Katz A
    PLoS One; 2019; 14(1):e0209492. PubMed ID: 30625163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes.
    Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H
    Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation and Skin Permeation of Active-Loaded Lipid Nanoparticles: Evaluation and Screening by Synergizing Molecular Dynamics Simulations and Experiments.
    Gupta KM; Das S; Wong ABH; Chow PS
    Langmuir; 2023 Jan; 39(1):308-319. PubMed ID: 36573314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wrapping of nanoparticles by the cell membrane: the role of interactions between the nanoparticles.
    Tang H; Ye H; Zhang H; Zheng Y
    Soft Matter; 2015 Nov; 11(44):8674-83. PubMed ID: 26381589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Entry of Individual Nanoparticles into Mammalian Cells Driven by Free Energy Decline and Regulated by Their Sizes.
    Wei Y; Chen H; Li YX; He K; Yang K; Pang HB
    ACS Nano; 2022 Apr; 16(4):5885-5897. PubMed ID: 35302738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.
    Fleischer CC; Payne CK
    Acc Chem Res; 2014 Aug; 47(8):2651-9. PubMed ID: 25014679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field.
    Shimizu K; Nakamura H; Watano S
    Nanoscale; 2016 Jun; 8(23):11897-906. PubMed ID: 27241464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing amphiphilic Janus nanoparticles with tunable lipid raft affinity
    Lin X; Lin X
    Biomater Sci; 2021 Dec; 9(24):8249-8258. PubMed ID: 34757373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane.
    Liu Y; Li S; Liu X; Sun H; Yue T; Zhang X; Yan B; Cao D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23822-23831. PubMed ID: 31250627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles.
    Lee OS; Schatz GC
    Methods Mol Biol; 2011; 726():283-96. PubMed ID: 21424456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter.
    Shen Z; Ye H; Yi X; Li Y
    ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity.
    Deng J; Gao C
    Nanotechnology; 2016 Oct; 27(41):412002. PubMed ID: 27609340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyvinyl Chloride Nanoparticles Affect Cell Membrane Integrity by Disturbing the Properties of the Multicomponent Lipid Bilayer in
    Li M; Zhang Y; Li C; Lin J; Li X
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2015 Apr; 11(16):3165-75. PubMed ID: 25757187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular interactions between gold nanoparticles and model cell membranes.
    Hu P; Zhang X; Zhang C; Chen Z
    Phys Chem Chem Phys; 2015 Apr; 17(15):9873-84. PubMed ID: 25776800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular interactions of therapeutically delivered nanoparticles.
    Kumari A; Yadav SK
    Expert Opin Drug Deliv; 2011 Feb; 8(2):141-51. PubMed ID: 21219249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.