These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

926 related articles for article (PubMed ID: 30814288)

  • 21. The soft palate is an important site of adaptation for transmissible influenza viruses.
    Lakdawala SS; Jayaraman A; Halpin RA; Lamirande EW; Shih AR; Stockwell TB; Lin X; Simenauer A; Hanson CT; Vogel L; Paskel M; Minai M; Moore I; Orandle M; Das SR; Wentworth DE; Sasisekharan R; Subbarao K
    Nature; 2015 Oct; 526(7571):122-5. PubMed ID: 26416728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human and avian influenza viruses target different cell types in cultures of human airway epithelium.
    Matrosovich MN; Matrosovich TY; Gray T; Roberts NA; Klenk HD
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4620-4. PubMed ID: 15070767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses.
    Chan RW; Chan MC; Nicholls JM; Malik Peiris JS
    Virus Res; 2013 Dec; 178(1):133-45. PubMed ID: 23684848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. M2SR, a novel live influenza vaccine, protects mice and ferrets against highly pathogenic avian influenza.
    Hatta Y; Boltz D; Sarawar S; Kawaoka Y; Neumann G; Bilsel P
    Vaccine; 2017 Jul; 35(33):4177-4183. PubMed ID: 28668565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Pathogenic H5N1 and Novel H7N9 Influenza A Viruses Induce More Profound Proteomic Host Responses than Seasonal and Pandemic H1N1 Strains.
    Simon PF; McCorrister S; Hu P; Chong P; Silaghi A; Westmacott G; Coombs KM; Kobasa D
    J Proteome Res; 2015 Nov; 14(11):4511-23. PubMed ID: 26381135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity.
    Chutinimitkul S; van Riel D; Munster VJ; van den Brand JM; Rimmelzwaan GF; Kuiken T; Osterhaus AD; Fouchier RA; de Wit E
    J Virol; 2010 Jul; 84(13):6825-33. PubMed ID: 20392847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.
    Daidoji T; Watanabe Y; Ibrahim MS; Yasugi M; Maruyama H; Masuda T; Arai F; Ohba T; Honda A; Ikuta K; Nakaya T
    J Biol Chem; 2015 Apr; 290(17):10627-42. PubMed ID: 25673693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses.
    Lipatov AS; Kwon YK; Sarmento LV; Lager KM; Spackman E; Suarez DL; Swayne DE
    PLoS Pathog; 2008 Jul; 4(7):e1000102. PubMed ID: 18617994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Receptor specificity does not affect replication or virulence of the 2009 pandemic H1N1 influenza virus in mice and ferrets.
    Lakdawala SS; Shih AR; Jayaraman A; Lamirande EW; Moore I; Paskel M; Kenney H; Sasisekharan R; Subbarao K
    Virology; 2013 Nov; 446(1-2):349-56. PubMed ID: 24074599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HA-Dependent Tropism of H5N1 and H7N9 Influenza Viruses to Human Endothelial Cells Is Determined by Reduced Stability of the HA, Which Allows the Virus To Cope with Inefficient Endosomal Acidification and Constitutively Expressed IFITM3.
    Hensen L; Matrosovich T; Roth K; Klenk HD; Matrosovich M
    J Virol; 2019 Dec; 94(1):. PubMed ID: 31597765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of transmission of a human influenza virus with avian receptor specificity between ferrets is not due to decreased virus shedding but rather a lower infectivity in vivo.
    Roberts KL; Shelton H; Scull M; Pickles R; Barclay WS
    J Gen Virol; 2011 Aug; 92(Pt 8):1822-1831. PubMed ID: 21508186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of H5N1 Influenza Virus Quasispecies with Adaptive Hemagglutinin Mutations from Single-Virus Infections of Human Airway Cells.
    Watanabe Y; Arai Y; Kawashita N; Ibrahim MS; Elgendy EM; Daidoji T; Kajikawa J; Hiramatsu H; Sriwilaijaroen N; Ono T; Takagi T; Takahashi K; Shioda T; Matsumoto K; Suzuki Y; Nakaya T
    J Virol; 2018 Jun; 92(11):. PubMed ID: 29563293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The differentiated airway epithelium infected by influenza viruses maintains the barrier function despite a dramatic loss of ciliated cells.
    Wu NH; Yang W; Beineke A; Dijkman R; Matrosovich M; Baumgärtner W; Thiel V; Valentin-Weigand P; Meng F; Herrler G
    Sci Rep; 2016 Dec; 6():39668. PubMed ID: 28004801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decrease of virus receptors during highly pathogenic H5N1 virus infection in humans and other mammals.
    van Riel D; Leijten LM; Kochs G; Osterhaus ADME; Kuiken T
    Am J Pathol; 2013 Nov; 183(5):1382-1389. PubMed ID: 23993779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influenza A virus infection of primary differentiated airway epithelial cell cultures derived from Syrian golden hamsters.
    Newby CM; Rowe RK; Pekosz A
    Virology; 2006 Oct; 354(1):80-90. PubMed ID: 16876846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses.
    Yu WC; Chan RW; Wang J; Travanty EA; Nicholls JM; Peiris JS; Mason RJ; Chan MC
    J Virol; 2011 Jul; 85(14):6844-55. PubMed ID: 21543489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into the Acquisition of Virulence of Avian Influenza Viruses during a Single Passage in Ferrets.
    Butler J; Middleton D; Haining J; Layton R; Rockman S; Brown LE; Sapats S
    Viruses; 2019 Oct; 11(10):. PubMed ID: 31590265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inefficient transmission of H5N1 influenza viruses in a ferret contact model.
    Yen HL; Lipatov AS; Ilyushina NA; Govorkova EA; Franks J; Yilmaz N; Douglas A; Hay A; Krauss S; Rehg JE; Hoffmann E; Webster RG
    J Virol; 2007 Jul; 81(13):6890-8. PubMed ID: 17459930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HA N193D substitution in the HPAI H5N1 virus alters receptor binding affinity and enhances virulence in mammalian hosts.
    Jang SG; Kim YI; Casel MAB; Choi JH; Gil JR; Rollon R; Kim EH; Kim SM; Ji HY; Park DB; Hwang J; Ahn JW; Kim MH; Song MS; Choi YK
    Emerg Microbes Infect; 2024 Dec; 13(1):2302854. PubMed ID: 38189114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathogenesis and transmission of triple-reassortant swine H1N1 influenza viruses isolated before the 2009 H1N1 pandemic.
    Belser JA; Gustin KM; Maines TR; Blau DM; Zaki SR; Katz JM; Tumpey TM
    J Virol; 2011 Feb; 85(4):1563-72. PubMed ID: 21123386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.