These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 30814938)

  • 41. Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):439-53. PubMed ID: 8822569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A model of the saccade-generating system that accounts for trajectory variations produced by competing visual stimuli.
    Arai K; Keller EL
    Biol Cybern; 2005 Jan; 92(1):21-37. PubMed ID: 15650897
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural mechanisms of speed-accuracy tradeoff of visual search: saccade vigor, the origin of targeting errors, and comparison of the superior colliculus and frontal eye field.
    Reppert TR; Servant M; Heitz RP; Schall JD
    J Neurophysiol; 2018 Jul; 120(1):372-384. PubMed ID: 29668383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements.
    Dorris MC; Paré M; Munoz DP
    J Neurosci; 1997 Nov; 17(21):8566-79. PubMed ID: 9334428
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Collicular involvement in a saccadic colour discrimination task.
    Ottes FP; Van Gisbergen JA; Eggermont JJ
    Exp Brain Res; 1987; 66(3):465-78. PubMed ID: 3609194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sensory processing of motor inaccuracy depends on previously performed movement and on subsequent motor corrections: a study of the saccadic system.
    Panouillères M; Urquizar C; Salemme R; Pélisson D
    PLoS One; 2011 Feb; 6(2):e17329. PubMed ID: 21383849
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence that the superior colliculus participates in the feedback control of saccadic eye movements.
    Soetedjo R; Kaneko CR; Fuchs AF
    J Neurophysiol; 2002 Feb; 87(2):679-95. PubMed ID: 11826037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disruption of pupil size modulation correlates with voluntary motor preparation deficits in Parkinson's disease.
    Wang CA; McInnis H; Brien DC; Pari G; Munoz DP
    Neuropsychologia; 2016 Jan; 80():176-184. PubMed ID: 26631540
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of pre-cues on voluntary and reflexive saccade generation. II. Pro-cues for anti-saccades.
    Weber H; Dürr N; Fischer B
    Exp Brain Res; 1998 Jun; 120(4):417-31. PubMed ID: 9655227
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory.
    Mazzoni P; Bracewell RM; Barash S; Andersen RA
    J Neurophysiol; 1996 Sep; 76(3):1439-56. PubMed ID: 8890265
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Task-dependence of saccade-related activity in monkey superior solliculus: implications for models of the saccadic system.
    Van Opstal AJ; Frens MA
    Prog Brain Res; 1996; 112():179-94. PubMed ID: 8979829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of the basal ganglia in the control of purposive saccadic eye movements.
    Hikosaka O; Takikawa Y; Kawagoe R
    Physiol Rev; 2000 Jul; 80(3):953-78. PubMed ID: 10893428
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Saccades to somatosensory targets. II. motor convergence in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):428-38. PubMed ID: 8822568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Short-term adaptation of electrically induced saccades in monkey superior colliculus.
    Melis BJ; van Gisbergen JA
    J Neurophysiol; 1996 Sep; 76(3):1744-58. PubMed ID: 8890289
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects.
    Kimmig H; Greenlee MW; Gondan M; Schira M; Kassubek J; Mergner T
    Exp Brain Res; 2001 Nov; 141(2):184-94. PubMed ID: 11713630
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Are somatosensory saccades voluntary or reflexive?
    Amlôt R; Walker R
    Exp Brain Res; 2006 Jan; 168(4):557-65. PubMed ID: 16273407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigating the site of human saccadic adaptation with express and targeting saccades.
    Hopp JJ; Fuchs AF
    Exp Brain Res; 2002 Jun; 144(4):538-48. PubMed ID: 12037638
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strategic control over saccadic eye movements: studies of the fixation offset effect.
    Machado L; Rafal RD
    Percept Psychophys; 2000 Aug; 62(6):1236-42. PubMed ID: 11019619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of age and gender on anti-saccade performance: Results from a large cohort of healthy aging individuals.
    Mack DJ; Heinzel S; Pilotto A; Stetz L; Lachenmaier S; Gugolz L; Srulijes K; Eschweiler GW; Sünkel U; Berg D; Ilg UJ
    Eur J Neurosci; 2020 Nov; 52(9):4165-4184. PubMed ID: 32575168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.