These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Machine learning approaches for electronic health records phenotyping: a methodical review. Yang S; Varghese P; Stephenson E; Tu K; Gronsbell J J Am Med Inform Assoc; 2023 Jan; 30(2):367-381. PubMed ID: 36413056 [TBL] [Abstract][Full Text] [Related]
6. Rubik: Knowledge Guided Tensor Factorization and Completion for Health Data Analytics. Wang Y; Chen R; Ghosh J; Denny JC; Kho A; Chen Y; Malin BA; Sun J KDD; 2015 Aug; 2015():1265-1274. PubMed ID: 31452969 [TBL] [Abstract][Full Text] [Related]
7. Automated feature selection of predictors in electronic medical records data. Gronsbell J; Minnier J; Yu S; Liao K; Cai T Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541 [TBL] [Abstract][Full Text] [Related]
8. The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data. Ding DY; Simpson C; Pfohl S; Kale DC; Jung K; Shah NH Pac Symp Biocomput; 2019; 24():18-29. PubMed ID: 30864307 [TBL] [Abstract][Full Text] [Related]
9. PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records. Zheng NS; Feng Q; Kerchberger VE; Zhao J; Edwards TL; Cox NJ; Stein CM; Roden DM; Denny JC; Wei WQ J Am Med Inform Assoc; 2020 Nov; 27(11):1675-1687. PubMed ID: 32974638 [TBL] [Abstract][Full Text] [Related]
10. Natural Language Processing for EHR-Based Computational Phenotyping. Zeng Z; Deng Y; Li X; Naumann T; Luo Y IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):139-153. PubMed ID: 29994486 [TBL] [Abstract][Full Text] [Related]
11. Federated Tensor Factorization for Computational Phenotyping. Kim Y; Sun J; Yu H; Jiang X KDD; 2017 Aug; 2017():887-895. PubMed ID: 29071165 [TBL] [Abstract][Full Text] [Related]
12. Feature extraction for phenotyping from semantic and knowledge resources. Ning W; Chan S; Beam A; Yu M; Geva A; Liao K; Mullen M; Mandl KD; Kohane I; Cai T; Yu S J Biomed Inform; 2019 Mar; 91():103122. PubMed ID: 30738949 [TBL] [Abstract][Full Text] [Related]
13. A machine learning-based framework to identify type 2 diabetes through electronic health records. Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371 [TBL] [Abstract][Full Text] [Related]
14. Development of Type 2 Diabetes Mellitus Phenotyping Framework Using Expert Knowledge and Machine Learning Approach. Kagawa R; Kawazoe Y; Ida Y; Shinohara E; Tanaka K; Imai T; Ohe K J Diabetes Sci Technol; 2017 Jul; 11(4):791-799. PubMed ID: 27932531 [TBL] [Abstract][Full Text] [Related]
15. sureLDA: A multidisease automated phenotyping method for the electronic health record. Ahuja Y; Zhou D; He Z; Sun J; Castro VM; Gainer V; Murphy SN; Hong C; Cai T J Am Med Inform Assoc; 2020 Aug; 27(8):1235-1243. PubMed ID: 32548637 [TBL] [Abstract][Full Text] [Related]
16. Semi-supervised Learning for Phenotyping Tasks. Dligach D; Miller T; Savova GK AMIA Annu Symp Proc; 2015; 2015():502-11. PubMed ID: 26958183 [TBL] [Abstract][Full Text] [Related]
17. Privacy-Preserving Tensor Factorization for Collaborative Health Data Analysis. Ma J; Zhang Q; Lou J; Ho JC; Xiong L; Jiang X Proc ACM Int Conf Inf Knowl Manag; 2019 Nov; 2019():1291-1300. PubMed ID: 31897355 [TBL] [Abstract][Full Text] [Related]
18. TASTE: Temporal and Static Tensor Factorization for Phenotyping Electronic Health Records. Afshar A; Perros I; Park H; deFilippi C; Yan X; Stewart W; Ho J; Sun J Proc ACM Conf Health Inference Learn (2020); 2020 Apr; 2020():193-203. PubMed ID: 33659966 [No Abstract] [Full Text] [Related]
19. Clinical phenotyping in selected national networks: demonstrating the need for high-throughput, portable, and computational methods. Richesson RL; Sun J; Pathak J; Kho AN; Denny JC Artif Intell Med; 2016 Jul; 71():57-61. PubMed ID: 27506131 [TBL] [Abstract][Full Text] [Related]
20. Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study. Anderson AE; Kerr WT; Thames A; Li T; Xiao J; Cohen MS J Biomed Inform; 2016 Apr; 60():162-8. PubMed ID: 26707455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]