These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30815145)

  • 1. The Role of a Deep-Learning Method for Negation Detection in Patient Cohort Identification from Electroencephalography Reports.
    Taylor SJ; Harabagiu SM
    AMIA Annu Symp Proc; 2018; 2018():1018-1027. PubMed ID: 30815145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active deep learning for the identification of concepts and relations in electroencephalography reports.
    Maldonado R; Harabagiu SM
    J Biomed Inform; 2019 Oct; 98():103265. PubMed ID: 31470094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does BERT need domain adaptation for clinical negation detection?
    Lin C; Bethard S; Dligach D; Sadeque F; Savova G; Miller TA
    J Am Med Inform Assoc; 2020 Apr; 27(4):584-591. PubMed ID: 32044989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction.
    Fabregat H; Duque A; Martinez-Romo J; Araujo L
    J Biomed Inform; 2023 Feb; 138():104279. PubMed ID: 36610608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negation and uncertainty detection in clinical texts written in Spanish: a deep learning-based approach.
    Solarte Pabón O; Montenegro O; Torrente M; Rodríguez González A; Provencio M; Menasalvas E
    PeerJ Comput Sci; 2022; 8():e913. PubMed ID: 35494817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-modal Patient Cohort Identification from EEG Report and Signal Data.
    Goodwin TR; Harabagiu SM
    AMIA Annu Symp Proc; 2016; 2016():1794-1803. PubMed ID: 28269938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomedical negation scope detection with conditional random fields.
    Agarwal S; Yu H
    J Am Med Inform Assoc; 2010; 17(6):696-701. PubMed ID: 20962133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting negation and scope in Chinese clinical notes using character and word embedding.
    Kang T; Zhang S; Xu N; Wen D; Zhang X; Lei J
    Comput Methods Programs Biomed; 2017 Mar; 140():53-59. PubMed ID: 28254090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negation and speculation processing: A study on cue-scope labelling and assertion classification in Spanish clinical text.
    Perez N; Cuadros M; Rigau G
    Artif Intell Med; 2023 Nov; 145():102682. PubMed ID: 37925211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel hybrid approach to automated negation detection in clinical radiology reports.
    Huang Y; Lowe HJ
    J Am Med Inform Assoc; 2007; 14(3):304-11. PubMed ID: 17329723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negation recognition in clinical natural language processing using a combination of the NegEx algorithm and a convolutional neural network.
    Argüello-González G; Aquino-Esperanza J; Salvador D; Bretón-Romero R; Del Río-Bermudez C; Tello J; Menke S
    BMC Med Inform Decis Mak; 2023 Oct; 23(1):216. PubMed ID: 37833661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DEEPEN: A negation detection system for clinical text incorporating dependency relation into NegEx.
    Mehrabi S; Krishnan A; Sohn S; Roch AM; Schmidt H; Kesterson J; Beesley C; Dexter P; Max Schmidt C; Liu H; Palakal M
    J Biomed Inform; 2015 Apr; 54():213-9. PubMed ID: 25791500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negation detection in Dutch clinical texts: an evaluation of rule-based and machine learning methods.
    van Es B; Reteig LC; Tan SC; Schraagen M; Hemker MM; Arends SRS; Rios MAR; Haitjema S
    BMC Bioinformatics; 2023 Jan; 24(1):10. PubMed ID: 36624385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient Cohort Retrieval using Transformer Language Models.
    Soni S; Roberts K
    AMIA Annu Symp Proc; 2020; 2020():1150-1159. PubMed ID: 33936491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation and evaluation of a negation tagger in a pipeline-based system for information extract from pathology reports.
    Mitchell KJ; Becich MJ; Berman JJ; Chapman WW; Gilbertson J; Gupta D; Harrison J; Legowski E; Crowley RS
    Stud Health Technol Inform; 2004; 107(Pt 1):663-7. PubMed ID: 15360896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring Clinical Correlations from EEG Reports with Deep Neural Learning.
    Goodwin TR; Harabagiu SM
    AMIA Annu Symp Proc; 2017; 2017():770-779. PubMed ID: 29854143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural negated entity recognition in Spanish electronic health records.
    Santiso S; Pérez A; Casillas A; Oronoz M
    J Biomed Inform; 2020 May; 105():103419. PubMed ID: 32298847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Processing of Negation and Polarity: An Overview.
    Dudschig C; Kaup B; Liu M; Schwab J
    J Psycholinguist Res; 2021 Dec; 50(6):1199-1213. PubMed ID: 34787786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes.
    Vincze V; Szarvas G; Farkas R; Móra G; Csirik J
    BMC Bioinformatics; 2008 Nov; 9 Suppl 11(Suppl 11):S9. PubMed ID: 19025695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep neural models for extracting entities and relationships in the new RDD corpus relating disabilities and rare diseases.
    Fabregat H; Araujo L; Martinez-Romo J
    Comput Methods Programs Biomed; 2018 Oct; 164():121-129. PubMed ID: 30195420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.