These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30815644)

  • 1. Luminescence thermometry for in situ temperature measurements in microfluidic devices.
    Geitenbeek RG; Vollenbroek JC; Weijgertze HMH; Tregouet CBM; Nieuwelink AE; Kennedy CL; Weckhuysen BM; Lohse D; van Blaaderen A; van den Berg A; Odijk M; Meijerink A
    Lab Chip; 2019 Mar; 19(7):1236-1246. PubMed ID: 30815644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient.
    Cheng JY; Hsieh CJ; Chuang YC; Hsieh JR
    Analyst; 2005 Jun; 130(6):931-40. PubMed ID: 15912243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Chip with Fiber-Tip Sensors for Synchronously Monitoring Concentration and Temperature of Glucose Solutions.
    Qu J; Liu Y; Li Y; Li J; Meng S
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Luminescence Thermometry To Locally Measure Temperature Gradients during Catalytic Reactions.
    Geitenbeek RG; Nieuwelink AE; Jacobs TS; Salzmann BBV; Goetze J; Meijerink A; Weckhuysen BM
    ACS Catal; 2018 Mar; 8(3):2397-2401. PubMed ID: 29527404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal loading in flow-through electroporation microfluidic devices.
    del Rosal B; Sun C; Loufakis DN; Lu C; Jaque D
    Lab Chip; 2013 Aug; 13(15):3119-27. PubMed ID: 23760021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis.
    Mirasoli M; Guardigli M; Michelini E; Roda A
    J Pharm Biomed Anal; 2014 Jan; 87():36-52. PubMed ID: 24268500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boltzmann-distribution-dominated persistent luminescence ratiometric thermometry in NaYF
    Li L; Wu Z; Wang C; Han X; Marciniak L; Yang Y
    Opt Lett; 2022 Apr; 47(7):1701-1704. PubMed ID: 35363712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-precision thermometry microfluidic chip for real-time monitoring of the physiological process of live tumour cells.
    Zhao X; Gao W; Yin J; Fan W; Wang Z; Hu K; Mai Y; Luan A; Xu B; Jin Q
    Talanta; 2021 May; 226():122101. PubMed ID: 33676657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide-range ratiometric upconversion luminescence thermometry based on non-thermally coupled levels of Er in high-temperature cubic phase NaYF
    Janjua RA; Farooq U; Dai R; Wang Z; Zhang Z
    Opt Lett; 2019 Oct; 44(19):4678-4681. PubMed ID: 31568415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.
    Gicquel Y; Schubert R; Kapis S; Bourenkov G; Schneider T; Perbandt M; Betzel C; Chapman HN; Heymann M
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4.
    Xu W; Zhang Z; Cao W
    Opt Lett; 2012 Dec; 37(23):4865-7. PubMed ID: 23202072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photothermally generated bubble on fiber (BoF) for precise sensing and control of liquid flow along a microfluidic channel.
    Ma J; Wang G; Jin L; Oh K; Guan BO
    Opt Express; 2019 Jul; 27(14):19768-19777. PubMed ID: 31503732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated polymerase chain reaction chips utilizing digital microfluidics.
    Chang YH; Lee GB; Huang FC; Chen YY; Lin JL
    Biomed Microdevices; 2006 Sep; 8(3):215-25. PubMed ID: 16718406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-induced thermal effects on spatial DNA melting.
    Crews N; Ameel T; Wittwer C; Gale B
    Lab Chip; 2008 Nov; 8(11):1922-9. PubMed ID: 18941694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic vapor-diffusion barrier for pressure reduction in fully closed PCR modules.
    Czilwik G; Schwarz I; Keller M; Wadle S; Zehnle S; von Stetten F; Mark D; Zengerle R; Paust N
    Lab Chip; 2015 Feb; 15(4):1084-91. PubMed ID: 25524461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.