BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 30815657)

  • 1. Flexible fiber-based optoelectronics for neural interfaces.
    Park S; Loke G; Fink Y; Anikeeva P
    Chem Soc Rev; 2019 Mar; 48(6):1826-1852. PubMed ID: 30815657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.
    Canales A; Park S; Kilias A; Anikeeva P
    Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo.
    Canales A; Jia X; Froriep UP; Koppes RA; Tringides CM; Selvidge J; Lu C; Hou C; Wei L; Fink Y; Anikeeva P
    Nat Biotechnol; 2015 Mar; 33(3):277-84. PubMed ID: 25599177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic neural probes: in vivo tools for advancing neuroscience.
    Sim JY; Haney MP; Park SI; McCall JG; Jeong JW
    Lab Chip; 2017 Apr; 17(8):1406-1435. PubMed ID: 28349140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step optogenetics with multifunctional flexible polymer fibers.
    Park S; Guo Y; Jia X; Choe HK; Grena B; Kang J; Park J; Lu C; Canales A; Chen R; Yim YS; Choi GB; Fink Y; Anikeeva P
    Nat Neurosci; 2017 Apr; 20(4):612-619. PubMed ID: 28218915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive polymer fiber neural device for drug delivery and enlarged illumination angle for neuromodulation.
    Sui K; Meneghetti M; Kaur J; Sørensen RJF; Berg RW; Markos C
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35130533
    [No Abstract]   [Full Text] [Related]  

  • 7. Customizing MRI-Compatible Multifunctional Neural Interfaces through Fiber Drawing.
    Antonini MJ; Sahasrabudhe A; Tabet A; Schwalm M; Rosenfeld D; Garwood I; Park J; Loke G; Khudiyev T; Kanik M; Corbin N; Canales A; Jasanoff AP; Fink Y; Anikeeva P
    Adv Funct Mater; 2021 Oct; 31(43):. PubMed ID: 34924913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and manufacturing challenges of optogenetic neural interfaces: a review.
    Goncalves SB; Ribeiro JF; Silva AF; Costa RM; Correia JH
    J Neural Eng; 2017 Aug; 14(4):041001. PubMed ID: 28452331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique.
    Davey CJ; Argyros A; Fleming SC; Solomon SG
    Appl Opt; 2015 Dec; 54(34):10068-72. PubMed ID: 26836662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable optoelectronic probes for in vivo optogenetics.
    Iseri E; Kuzum D
    J Neural Eng; 2017 Jun; 14(3):031001. PubMed ID: 28198703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications.
    Guo B; Fan Y; Wang M; Cheng Y; Ji B; Chen Y; Wang G
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms.
    Sandoghchi SR; Jasion GT; Wheeler NV; Jain S; Lian Z; Wooler JP; Boardman RP; Baddela N; Chen Y; Hayes J; Fokoua EN; Bradley T; Gray DR; Mousavi SM; Petrovich M; Poletti F; Richardson DJ
    Opt Express; 2014 Oct; 22(21):26181-92. PubMed ID: 25401650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multichannel Flexible Optoelectronic Fiber Device for Distributed Implantable Neurological Stimulation and Monitoring.
    Yu J; Ling W; Li Y; Ma N; Wu Z; Liang R; Pan H; Liu W; Fu B; Wang K; Li C; Wang H; Peng H; Ning B; Yang J; Huang X
    Small; 2021 Jan; 17(4):e2005925. PubMed ID: 33372299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-optoelectrodes Integrated with Flexible Multifunctional Fiber Probes by High-Throughput Scalable Fabrication.
    Jiang S; Song J; Zhang Y; Nie M; Kim J; Marcano AL; Kadlec K; Mills WA; Yan X; Liu H; Tong R; Wang H; Kimbrough IF; Sontheimer H; Zhou W; Jia X
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9156-9165. PubMed ID: 33566572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies.
    Ayub S; Gentet LJ; Fiáth R; Schwaerzle M; Borel M; David F; Barthó P; Ulbert I; Paul O; Ruther P
    Biomed Microdevices; 2017 Sep; 19(3):49. PubMed ID: 28560702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.
    Kim EG; Tu H; Luo H; Liu B; Bao S; Zhang J; Xu Y
    Lab Chip; 2015 Jul; 15(14):2939-49. PubMed ID: 26097907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Tools for Confined Stimulation in Deep Brain Structures.
    Castonguay A; Thomas S; Lesage F; Casanova C
    Methods Mol Biol; 2016; 1408():267-79. PubMed ID: 26965129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology.
    Budai D; Vizvári AD; Bali ZK; Márki B; Nagy LV; Kónya Z; Madarász D; Henn-Mike N; Varga C; Hernádi I
    PLoS One; 2018; 13(3):e0193836. PubMed ID: 29513711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible bioelectrodes with enhanced wrinkle microstructures for reliable electrochemical modification and neuromodulation in vivo.
    Ji B; Wang M; Ge C; Xie Z; Guo Z; Hong W; Gu X; Wang L; Yi Z; Jiang C; Yang B; Wang X; Li X; Li C; Liu J
    Biosens Bioelectron; 2019 Jun; 135():181-191. PubMed ID: 31022595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability.
    Luan L; Robinson JT; Aazhang B; Chi T; Yang K; Li X; Rathore H; Singer A; Yellapantula S; Fan Y; Yu Z; Xie C
    Neuron; 2020 Oct; 108(2):302-321. PubMed ID: 33120025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.