These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30815813)

  • 1. Comparison of multi-criteria analysis methodologies for the prioritization of arsenic-contaminated sites in the southwest of China.
    Chen R; Xiong Y; Li J; Teng Y; Chen H; Yang J
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11781-11792. PubMed ID: 30815813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional risk assessment for contaminated sites part 1: vulnerability assessment by multicriteria decision analysis.
    Zabeo A; Pizzol L; Agostini P; Critto A; Giove S; Marcomini A
    Environ Int; 2011 Nov; 37(8):1295-306. PubMed ID: 21723609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional risk assessment for contaminated sites part 2: ranking of potentially contaminated sites.
    Pizzol L; Critto A; Agostini P; Marcomini A
    Environ Int; 2011 Nov; 37(8):1307-20. PubMed ID: 21704374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-attribute methodology for the prioritisation of oil contaminated sites in the Niger Delta.
    Sam K; Coulon F; Prpich G
    Sci Total Environ; 2017 Feb; 579():1323-1332. PubMed ID: 27916308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical analysis, distributed modelling and risk indices. Three fundamental pillars in Risk Assessment.
    Benfenati E; Genah D; Verro R; Mazzatorta P
    ScientificWorldJournal; 2002 Jun; 2():1617-25. PubMed ID: 12806149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional risk assessment for contaminated sites part 3: spatial decision support system.
    Agostini P; Pizzol L; Critto A; D'Alessandro M; Zabeo A; Marcomini A
    Environ Int; 2012 Nov; 48():121-32. PubMed ID: 22903025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental risk analysis and prioritization of pharmaceuticals in a developing world context.
    Mansour F; Al-Hindi M; Saad W; Salam D
    Sci Total Environ; 2016 Jul; 557-558():31-43. PubMed ID: 26994791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of receptor-specific risk distribution in the arsenic contaminated land management.
    Chen IC; Ng S; Wang GS; Ma HW
    J Hazard Mater; 2013 Nov; 262():1080-90. PubMed ID: 22884730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A risk-ranking methodology for prioritizing historic, potentially contaminated mine sites in British Columbia.
    Power BA; Tinholt MJ; Hill RA; Fikart A; Wilson RM; Stewart GG; Sinnett GD; Runnells JL
    Integr Environ Assess Manag; 2010 Jan; 6(1):145-54. PubMed ID: 19558202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A risk-based methodology for ranking environmental chemical stressors at the regional scale.
    Giubilato E; Zabeo A; Critto A; Giove S; Bierkens J; Den Hond E; Marcomini A
    Environ Int; 2014 Apr; 65():41-53. PubMed ID: 24440801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rough-interval-based multicriteria decision analysis for remediation of 1,1-dichloroethane contaminated groundwater.
    Ren L; He L; Lu H; Li J
    Chemosphere; 2017 Feb; 168():244-253. PubMed ID: 27788363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritization of potentially contaminated sites: A comparison between the application of a solute transport model and a risk-screening method in China.
    Li T; Liu Y; Bjerg PL
    J Environ Manage; 2021 Mar; 281():111765. PubMed ID: 33387736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China.
    Liu CP; Luo CL; Gao Y; Li FB; Lin LW; Wu CA; Li XD
    Environ Pollut; 2010 Mar; 158(3):820-6. PubMed ID: 19910093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk valuation of ecological resources at contaminated deactivation and decommissioning facilities: methodology and a case study at the Department of Energy's Hanford site.
    Burger J; Gochfeld M; Jeitner C
    Environ Monit Assess; 2018 Jul; 190(8):478. PubMed ID: 30030638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spatial distribution and environmental risk of As and Pb from street dust in non-ferrous metals smelting areas].
    Xu SJ; Zheng N; Liu JS; Sun CY; Wang Y; Chang SZ
    Huan Jing Ke Xue; 2011 May; 32(5):1441-6. PubMed ID: 21780603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China.
    Xiao T; Guha J; Boyle D; Liu CQ; Chen J
    Sci Total Environ; 2004 Jan; 318(1-3):223-44. PubMed ID: 14654287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China.
    Liao XY; Chen TB; Xie H; Liu YR
    Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils: Method comparison and method development.
    Li J; Li K; Cui XY; Basta NT; Li LP; Li HB; Ma LQ
    Sci Total Environ; 2015 Nov; 532():812-20. PubMed ID: 26116410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional multi-compartment ecological risk assessment: Establishing cadmium pollution risk in the northern Bohai Rim, China.
    Shi Y; Wang R; Lu Y; Song S; Johnson AC; Sweetman A; Jones K
    Environ Int; 2016 Sep; 94():283-291. PubMed ID: 27286039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys.
    Wang HB; Ye ZH; Shu WS; Li WC; Wong MH; Lan CY
    Int J Phytoremediation; 2006; 8(1):1-11. PubMed ID: 16615304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.