BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30816129)

  • 1. ATP synthesis at physiological nucleotide concentrations.
    Meyrat A; von Ballmoos C
    Sci Rep; 2019 Feb; 9(1):3070. PubMed ID: 30816129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase.
    Feniouk BA; Suzuki T; Yoshida M
    J Biol Chem; 2007 Jan; 282(1):764-72. PubMed ID: 17092944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADP-Inhibition of H+-F
    Lapashina AS; Feniouk BA
    Biochemistry (Mosc); 2018 Oct; 83(10):1141-1160. PubMed ID: 30472953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F
    Lapashina AS; Shugaeva TE; Berezina KM; Kholina TD; Feniouk BA
    Biochemistry (Mosc); 2019 Apr; 84(4):407-415. PubMed ID: 31228932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Escherichia coli F1F0 ATP synthase displays biphasic synthesis kinetics.
    Tomashek JJ; Glagoleva OB; Brusilow WS
    J Biol Chem; 2004 Feb; 279(6):4465-70. PubMed ID: 14602713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic uncoupling in the ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2008 Dec; 1777(12):1518-27. PubMed ID: 18952048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of coupling in the Escherichia coli ATP synthase by ADP and P
    D'Alessandro M; Turina P; Melandri BA; Dunn SD
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):34-44. PubMed ID: 27751906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuated ADP-inhibition of F
    Lapashina AS; Kashko ND; Zubareva VM; Galkina KV; Markova OV; Knorre DA; Feniouk BA
    Biochim Biophys Acta Bioenerg; 2022 Jun; 1863(5):148544. PubMed ID: 35331734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of proton pumping efficiency in bacterial ATP synthases.
    Turina P; Rebecchi A; D'Alessandro M; Anefors S; Melandri BA
    Biochim Biophys Acta; 2006; 1757(5-6):320-5. PubMed ID: 16765908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-linked binding of Pi is required for continuous steady-state proton-translocating ATP hydrolysis catalyzed by F0.F1 ATP synthase.
    Zharova TV; Vinogradov AD
    Biochemistry; 2006 Dec; 45(48):14552-8. PubMed ID: 17128994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2011 Jan; 1807(1):130-43. PubMed ID: 20800570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.
    Haagsma AC; Driessen NN; Hahn MM; Lill H; Bald D
    FEMS Microbiol Lett; 2010 Dec; 313(1):68-74. PubMed ID: 21039782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous measurement and rapid kinetics of ATP synthesis in rat liver mitochondria, mitoplasts and inner membrane vesicles determined by firefly-luciferase luminescence.
    Lemasters JJ; Hackenbrock CR
    Eur J Biochem; 1976 Aug; 67(1):1-10. PubMed ID: 964235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel translocation intermediate allows re-evaluation of roles of ATP, proton motive force and SecG at the late stage of preprotein translocation.
    Nishiyama KI; Tokuda H
    Genes Cells; 2016 Dec; 21(12):1353-1364. PubMed ID: 27813233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The activity of the ATP synthase from Escherichia coli is regulated by the transmembrane proton motive force.
    Fischer S; Graber P; Turina P
    J Biol Chem; 2000 Sep; 275(39):30157-62. PubMed ID: 11001951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in Escherichia coli ATP synthase.
    Lapashina AS; Prikhodko AS; Shugaeva TE; Feniouk BA
    Biochim Biophys Acta Bioenerg; 2019 Mar; 1860(3):181-188. PubMed ID: 30528692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent modification of the catalytic sites of the H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ADP: modification of the catalytic site 2 (loose) and the catalytic site 3 (open) impairs multi-site, but not uni-site catalysis of both ATP synthesis and ATP hydrolysis.
    Possmayer FE; Hartog AF; Berden JA; Gräber P
    Biochim Biophys Acta; 2000 Jan; 1456(2-3):77-98. PubMed ID: 10627297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide-dependent and dicyclohexylcarbodiimide-sensitive conformational changes in the epsilon subunit of Escherichia coli ATP synthase.
    Mendel-Hartvig J; Capaldi RA
    Biochemistry; 1991 Nov; 30(45):10987-91. PubMed ID: 1834172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.