BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30816134)

  • 1. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol.
    Sarhan RM; Koopman W; Schuetz R; Schmid T; Liebig F; Koetz J; Bargheer M
    Sci Rep; 2019 Feb; 9(1):3060. PubMed ID: 30816134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding the kinetic limitations of plasmon catalysis: the case of 4-nitrothiophenol dimerization.
    Koopman W; Sarhan RM; Stete F; Schmitt CNZ; Bargheer M
    Nanoscale; 2020 Dec; 12(48):24411-24418. PubMed ID: 33300518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition of Gold Nanotriangles in Large Scale Close-Packed Monolayers for X-ray-Based Temperature Calibration and SERS Monitoring of Plasmon-Driven Catalytic Reactions.
    Liebig F; Sarhan RM; Sander M; Koopman W; Schuetz R; Bargheer M; Koetz J
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20247-20253. PubMed ID: 28535039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of Superlinear Power Dependence of Reaction Rates in Plasmon-Driven Photocatalysis: A Case Study of Reductive Nitrothiophenol Coupling Reactions.
    Chen K; Wang H
    Nano Lett; 2023 Apr; 23(7):2870-2876. PubMed ID: 36921149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating.
    Mahmoud MA
    Phys Chem Chem Phys; 2017 Dec; 19(47):32016-32023. PubMed ID: 29177303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.
    Keller EL; Frontiera RR
    ACS Nano; 2018 Jun; 12(6):5848-5855. PubMed ID: 29883086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and Mechanistic Investigation of the Photocatalyzed Surface Reduction of 4-Nitrothiophenol Observed on a Silver Plasmonic Film via Surface-Enhanced Raman Scattering.
    Qiu L; Pang GA; Zheng G; Bauer D; Wieland K; Haisch C
    ACS Appl Mater Interfaces; 2020 May; 12(18):21133-21142. PubMed ID: 32286058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the Inhomogeneity in Plasmonic Catalysis on Supported Gold Nanoparticles Using Surface-Enhanced Raman Scattering Microspectroscopy.
    Zhang Z; Kneipp J
    Anal Chem; 2018 Aug; 90(15):9199-9205. PubMed ID: 29969010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Silica Supports on Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-Enhanced Raman Thermometry.
    Keller EL; Kang H; Haynes CL; Frontiera RR
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40577-40584. PubMed ID: 30427654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy.
    Zhang Y; Hu Y; Li G; Zhang R
    Mikrochim Acta; 2019 Jun; 186(7):477. PubMed ID: 31250191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Chemical Reaction Imaging at the Solid-Liquid Interface via TERS.
    Bhattarai A; El-Khoury PZ
    J Phys Chem Lett; 2019 Jun; 10(11):2817-2822. PubMed ID: 31074285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibiting plasmon catalyzed conversion of para-nitrothiophenol on monolayer film of Au nanoparticles probed by surface enhanced Raman spectroscopy.
    Weng HY; Guo QH; Wang XR; Xu MM; Yuan YX; Gu RA; Yao JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Nov; 150():331-8. PubMed ID: 26056984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy.
    Zhan C; Chen XJ; Huang YF; Wu DY; Tian ZQ
    Acc Chem Res; 2019 Oct; 52(10):2784-2792. PubMed ID: 31532621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Prevalence of Anions at Plasmonic Nanojunctions: A Closer Look at
    Wang CF; O'Callahan BT; Kurouski D; Krayev A; El-Khoury PZ
    J Phys Chem Lett; 2020 May; 11(10):3809-3814. PubMed ID: 32340455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Molecular Patterning by Plasmon-Catalyzed Reactions.
    Zhang Z; Kneipp J
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43708-43714. PubMed ID: 34473478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the SERS activity and plasmon-driven reduction of p-nitrothiophenol on a Ag@MoS
    Miao P; Ma Y; Sun M; Li J; Xu P
    Faraday Discuss; 2019 May; 214(0):297-307. PubMed ID: 30806386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiked gold nanotriangles: formation, characterization and applications in surface-enhanced Raman spectroscopy and plasmon-enhanced catalysis.
    Liebig F; Sarhan RM; Bargheer M; Schmitt CNZ; Poghosyan AH; Shahinyan AA; Koetz J
    RSC Adv; 2020 Feb; 10(14):8152-8160. PubMed ID: 35497869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ostensible Steady-State Molecular Cooling with Plasmonic Gold Nanoparticles.
    Yu Z; Frontiera RR
    ACS Nano; 2023 Mar; 17(5):4306-4314. PubMed ID: 36867719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.