These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30816134)

  • 21. The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance.
    Koetz J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33147806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface-enhanced Raman scattering of 4,4'-dimercaptoazobenzene trapped in Au nanogaps.
    Kim K; Shin D; Kim KL; Shin KS
    Phys Chem Chem Phys; 2012 Mar; 14(12):4095-100. PubMed ID: 22334144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles.
    Yashchenok A; Masic A; Gorin D; Inozemtseva O; Shim BS; Kotov N; Skirtach A; Möhwald H
    Small; 2015 Mar; 11(11):1320-7. PubMed ID: 25367373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sulfite-triggered surface plasmon-catalyzed reduction of p-nitrothiophenol to p,p'-dimercaptoazobenzene.
    Xu G; Sun Y; Zhang Y; Xia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120282. PubMed ID: 34454131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photothermal Microscopy of Coupled Nanostructures and the Impact of Nanoscale Heating in Surface Enhanced Raman Spectroscopy.
    Zeng ZC; Wang H; Johns P; Hartland GV; Schultz ZD
    J Phys Chem C Nanomater Interfaces; 2017 Jun; 121(21):11623-11631. PubMed ID: 28736586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring plasmon-driven surface catalyzed reactions in situ using time-dependent surface-enhanced Raman spectroscopy on single particles of hierarchical peony-like silver microflowers.
    Tang X; Cai W; Yang L; Liu J
    Nanoscale; 2014 Aug; 6(15):8612-6. PubMed ID: 24980245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon-Driven Interfacial Catalytic Reactions in Plasmonic MOF Nanoparticles.
    Xie X; Zhang Y; Zhang L; Zheng J; Huang Y; Fa H
    Anal Chem; 2021 Oct; 93(39):13219-13225. PubMed ID: 34546701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmon-driven surface catalysis in hybridized plasmonic gap modes.
    Wang H; Liu T; Huang Y; Fang Y; Liu R; Wang S; Wen W; Sun M
    Sci Rep; 2014 Nov; 4():7087. PubMed ID: 25404139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classical vs. quantum plasmon-induced molecular transformations at metallic nanojunctions.
    Mantilla ABC; Wang CF; Krayev A; Gu Y; Schultz ZD; El-Khoury PZ
    Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2319233121. PubMed ID: 38547064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of Plasmon-Induced Catalysis of Thiolates and the Impact of Reaction Conditions.
    Yao X; Ehtesabi S; Höppener C; Deckert-Gaudig T; Schneidewind H; Kupfer S; Gräfe S; Deckert V
    J Am Chem Soc; 2024 Feb; 146(5):3031-3042. PubMed ID: 38275163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polarization-dependent surface plasmon-driven catalytic reaction on a single nanowire monitored by SERS.
    Li Z; Gao Y; Zhang L; Fang Y; Wang P
    Nanoscale; 2018 Oct; 10(39):18720-18727. PubMed ID: 30270366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Gap-Enhanced Raman Tags and Nanoparticle Aggregates with Polarization Dependent Super-Resolution Spectral SERS Imaging.
    Shoup DN; Fan S; Zapata-Herrera M; Schorr HC; Aizpurua J; Schultz ZD
    Anal Chem; 2024 Jul; 96(28):11422-11429. PubMed ID: 38958534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry.
    Szczerbiński J; Gyr L; Kaeslin J; Zenobi R
    Nano Lett; 2018 Nov; 18(11):6740-6749. PubMed ID: 30277787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ monitoring of catalytic reaction on single nanoporous gold nanowire with tuneable SERS and catalytic activity.
    Wu T; Lu Y; Liu J; Zhang S; Zhang X
    Talanta; 2020 Oct; 218():121181. PubMed ID: 32797927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies.
    Warkentin CL; Yu Z; Sarkar A; Frontiera RR
    Acc Chem Res; 2021 May; 54(10):2457-2466. PubMed ID: 33957039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmon-driven substitution of 4-mercaptophenylboronic acid to 4-nitrothiophenol monitored by surface-enhanced Raman spectroscopy.
    Kozisek J; Hrncirova J; Slouf M; Sloufova I
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 319():124523. PubMed ID: 38820811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Junction Plasmon Driven Population Inversion of Molecular Vibrations: A Picosecond Surface-Enhanced Raman Spectroscopy Study.
    Crampton KT; Fast A; Potma EO; Apkarian VA
    Nano Lett; 2018 Sep; 18(9):5791-5796. PubMed ID: 30064221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold Nanotriangles with Crumble Topping and their Influence on Catalysis and Surface-Enhanced Raman Spectroscopy.
    Liebig F; Sarhan RM; Schmitt CNZ; Thünemann AF; Prietzel C; Bargheer M; Koetz J
    Chempluschem; 2020 Mar; 85(3):519-526. PubMed ID: 31961045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible light-dependent molecular switches on Ag/AgCl nanostructures.
    Song W; Querebillo CJ; Götz R; Katz S; Kuhlmann U; Gernert U; Weidinger IM; Hildebrandt P
    Nanoscale; 2017 Jun; 9(24):8380-8387. PubMed ID: 28594421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.