These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30816159)

  • 21. Twin-Field Quantum Digital Signature with Fully Discrete Phase Randomization.
    Wu J; He C; Xie J; Liu X; Zhang M
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental Twin-Field Quantum Key Distribution over 1000 km Fiber Distance.
    Liu Y; Zhang WJ; Jiang C; Chen JP; Zhang C; Pan WX; Ma D; Dong H; Xiong JM; Zhang CJ; Li H; Wang RC; Wu J; Chen TY; You L; Wang XB; Zhang Q; Pan JW
    Phys Rev Lett; 2023 May; 130(21):210801. PubMed ID: 37295116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practical passive decoy state measurement-device-independent quantum key distribution with unstable sources.
    Liu L; Guo FZ; Wen QY
    Sci Rep; 2017 Sep; 7(1):11370. PubMed ID: 28900106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit.
    Maeda K; Sasaki T; Koashi M
    Nat Commun; 2019 Jul; 10(1):3140. PubMed ID: 31316074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proof-of-Principle Experimental Demonstration of Twin-Field Type Quantum Key Distribution.
    Zhong X; Hu J; Curty M; Qian L; Lo HK
    Phys Rev Lett; 2019 Sep; 123(10):100506. PubMed ID: 31573297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asynchronous measurement-device-independent quantum key distribution with hybrid source.
    Bai JL; Xie YM; Fu Y; Yin HL; Chen ZB
    Opt Lett; 2023 Jul; 48(13):3551-3554. PubMed ID: 37390178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement-device-independent quantum key distribution with modified coherent state.
    Li M; Zhang CM; Yin ZQ; Chen W; Wang S; Guo GC; Han ZF
    Opt Lett; 2014 Feb; 39(4):880-3. PubMed ID: 24562231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tight security bounds for decoy-state quantum key distribution.
    Yin HL; Zhou MG; Gu J; Xie YM; Lu YS; Chen ZB
    Sci Rep; 2020 Aug; 10(1):14312. PubMed ID: 32868774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.
    Song TT; Qin SJ; Wen QY; Wang YK; Jia HY
    Sci Rep; 2015 Oct; 5():15276. PubMed ID: 26471947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement-Device-Independent Twin-Field Quantum Key Distribution.
    Yin HL; Fu Y
    Sci Rep; 2019 Feb; 9(1):3045. PubMed ID: 30816262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the (relation between) efficiency and secret key rate of QKD.
    Bebrov G
    Sci Rep; 2024 Feb; 14(1):3638. PubMed ID: 38351081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detecting a Photon-Number Splitting Attack in Decoy-State Measurement-Device-Independent Quantum Key Distribution via Statistical Hypothesis Testing.
    Chen X; Chen L; Yan Y
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental quantum key distribution with decoy states.
    Zhao Y; Qi B; Ma X; Lo HK; Qian L
    Phys Rev Lett; 2006 Feb; 96(7):070502. PubMed ID: 16606067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method.
    Mao CC; Zhou XY; Zhu JR; Zhang CH; Zhang CM; Wang Q
    Opt Express; 2018 May; 26(10):13289-13300. PubMed ID: 29801354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the performance of reference-frame-independent quantum key distribution with advantage distillation technology.
    Jiang XL; Wang Y; Li JJ; Lu YF; Hao CP; Zhou C; Bao WS
    Opt Express; 2023 Mar; 31(6):9196-9210. PubMed ID: 37157494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental composable security decoy-state quantum key distribution using time-phase encoding.
    Yin HL; Liu P; Dai WW; Ci ZH; Gu J; Gao T; Wang QW; Shen ZY
    Opt Express; 2020 Sep; 28(20):29479-29485. PubMed ID: 33114847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Twin-field quantum digital signatures.
    Zhang CH; Zhou X; Zhang CM; Li J; Wang Q
    Opt Lett; 2021 Aug; 46(15):3757-3760. PubMed ID: 34329274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Twin-Field Quantum Key Distribution without Phase Locking.
    Li W; Zhang L; Lu Y; Li ZP; Jiang C; Liu Y; Huang J; Li H; Wang Z; Wang XB; Zhang Q; You L; Xu F; Pan JW
    Phys Rev Lett; 2023 Jun; 130(25):250802. PubMed ID: 37418729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method.
    Liu L; Guo FZ; Qin SJ; Wen QY
    Sci Rep; 2017 Feb; 7():42261. PubMed ID: 28198808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Efficient Routing Protocol for Quantum Key Distribution Networks.
    Yao J; Wang Y; Li Q; Mao H; El-Latif AAA; Chen N
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.