BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30816266)

  • 1. Promoter RNA sequencing (PRSeq) for the massive and quantitative promoter analysis in vitro.
    Ohuchi S; Mascher T; Suess B
    Sci Rep; 2019 Feb; 9(1):3118. PubMed ID: 30816266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of specific interactions between T7 promoter and T7 RNA polymerase by force spectroscopy using atomic force microscope.
    Zhang X; Yao Z; Duan Y; Zhang X; Shi J; Xu Z
    Biochem J; 2018 Jan; 475(1):319-328. PubMed ID: 29187520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-pass transcription by T7 RNA polymerase.
    Passalacqua LFM; Dingilian AI; Lupták A
    RNA; 2020 Dec; 26(12):2062-2071. PubMed ID: 32958559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous in vitro evolution of bacteriophage RNA polymerase promoters.
    Breaker RR; Banerji A; Joyce GF
    Biochemistry; 1994 Oct; 33(39):11980-6. PubMed ID: 7522554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding affinity of T7 RNA polymerase to its promoter in the supercoiled and linearized DNA templates.
    Chen YC; Jeng ST
    Biosci Biotechnol Biochem; 2000 Jun; 64(6):1126-32. PubMed ID: 10923780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function in promoter escape by T7 RNA polymerase.
    Martin CT; Esposito EA; Theis K; Gong P
    Prog Nucleic Acid Res Mol Biol; 2005; 80():323-47. PubMed ID: 16164978
    [No Abstract]   [Full Text] [Related]  

  • 7. Weakening of the T7 promoter-polymerase interaction facilitates promoter release.
    Guo Q; Sousa R
    J Biol Chem; 2005 Apr; 280(15):14956-61. PubMed ID: 15711016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of T7 RNA polymerase transcription initiation from promoters containing single-stranded regions.
    Maslak M; Martin CT
    Biochemistry; 1993 Apr; 32(16):4281-5. PubMed ID: 8476857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined in vitro/in vivo selection for polymerases with novel promoter specificities.
    Chelliserrykattil J; Cai G; Ellington AD
    BMC Biotechnol; 2001; 1():13. PubMed ID: 11806761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro selection of bacteriophage promoters employing a terminally capped template DNA and a streptavidin-binding aptamer.
    Ohuchi S
    J Biosci Bioeng; 2012 Jul; 114(1):110-2. PubMed ID: 22560719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutation in T7 RNA polymerase that facilitates promoter clearance.
    Guillerez J; Lopez PJ; Proux F; Launay H; Dreyfus M
    Proc Natl Acad Sci U S A; 2005 Apr; 102(17):5958-63. PubMed ID: 15831591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA sequence, physics, and promoter function: Analysis of high-throughput data On T7 promoter variants activity.
    Orlov MA; Sorokin AA
    J Bioinform Comput Biol; 2020 Apr; 18(2):2040001. PubMed ID: 32404013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RNA polymerase of marine cyanophage Syn5.
    Zhu B; Tabor S; Raytcheva DA; Hernandez A; King JA; Richardson CC
    J Biol Chem; 2013 Feb; 288(5):3545-52. PubMed ID: 23258537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of open complex instability in kinetic promoter selection by bacteriophage T7 RNA polymerase.
    Villemain J; Guajardo R; Sousa R
    J Mol Biol; 1997 Nov; 273(5):958-77. PubMed ID: 9367784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of halted T7 RNA polymerase elongation complexes reveals multiple factors that contribute to stability.
    Mentesana PE; Chin-Bow ST; Sousa R; McAllister WT
    J Mol Biol; 2000 Oct; 302(5):1049-62. PubMed ID: 11183774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection and characterization of a mutant T7 RNA polymerase that recognizes an expanded range of T7 promoter-like sequences.
    Ikeda RA; Chang LL; Warshamana GS
    Biochemistry; 1993 Sep; 32(35):9115-24. PubMed ID: 8369283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syn5 RNA polymerase synthesizes precise run-off RNA products.
    Zhu B; Tabor S; Richardson CC
    Nucleic Acids Res; 2014 Mar; 42(5):e33. PubMed ID: 24285303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system.
    D'Souza AD; Belotserkovskii BP; Hanawalt PC
    Biochim Biophys Acta Gene Regul Mech; 2018 Feb; 1861(2):158-166. PubMed ID: 29357316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Interaction of RNA polymerase of bacteriophage T7 with affinity modifier analogs of nucleoside triphosphates].
    Tunitskaia VL; Kochetkova SV; Godovikova TS; Kochetkov SN
    Mol Biol (Mosk); 2000; 34(1):60-6. PubMed ID: 10732341
    [No Abstract]   [Full Text] [Related]  

  • 20. Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity.
    Raskin CA; Diaz G; Joho K; McAllister WT
    J Mol Biol; 1992 Nov; 228(2):506-15. PubMed ID: 1453460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.