These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30816392)

  • 1. Influence of nanopore density on ethylene/acetylene separation by monolayer graphene.
    Jin B; Zhang X; Li F; Zhang N; Zong Z; Cao S; Li Z; Chen X
    Phys Chem Chem Phys; 2019 Mar; 21(11):6126-6132. PubMed ID: 30816392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of molecular permeation through nanoporous graphene membranes.
    Sun C; Boutilier MS; Au H; Poesio P; Bai B; Karnik R; Hadjiconstantinou NG
    Langmuir; 2014 Jan; 30(2):675-82. PubMed ID: 24364726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions.
    Yuan Z; Govind Rajan A; He G; Misra RP; Strano MS; Blankschtein D
    ACS Nano; 2021 Jan; 15(1):1727-1740. PubMed ID: 33439000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Separation of Metal Ions via Monolayer Nanoporous Graphene with Carboxyl Groups.
    Li Z; Liu Y; Zhao Y; Zhang X; Qian L; Tian L; Bai J; Qi W; Yao H; Gao B; Liu J; Wu W; Qiu H
    Anal Chem; 2016 Oct; 88(20):10002-10010. PubMed ID: 27618293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ozark Graphene Nanopore for Efficient Water Desalination.
    Cao Z; Markey G; Barati Farimani A
    J Phys Chem B; 2021 Oct; 125(40):11256-11263. PubMed ID: 34591487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal design of graphene nanopores for seawater desalination.
    Li Z; Qiu Y; Li K; Sha J; Li T; Chen Y
    J Chem Phys; 2018 Jan; 148(1):014703. PubMed ID: 29306278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydration-Determined Ion Selectivity of Graphene Subnanopores.
    Fu Y; Su S; Zhang N; Wang Y; Guo X; Xue J
    ACS Appl Mater Interfaces; 2020 May; 12(21):24281-24288. PubMed ID: 32349478
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Rodriguez A; Schlichting KP; Poulikakos D; Hu M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39701-39710. PubMed ID: 34392678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid screening of nanopore candidates in nanoporous single-layer graphene for selective separations using molecular visualization and interatomic potentials.
    Bondaz L; Chow CM; Karnik R
    J Chem Phys; 2021 May; 154(18):184111. PubMed ID: 34241041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation.
    Sun C; Bai B
    Sci Bull (Beijing); 2017 Apr; 62(8):554-562. PubMed ID: 36659363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scale Effect on Simple Liquid Transport through a Nanoporous Graphene Membrane.
    Hossain JA; Kim B
    Langmuir; 2021 Jun; 37(21):6498-6509. PubMed ID: 34018744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.
    Barati Farimani A; Dibaeinia P; Aluru NR
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):92-100. PubMed ID: 28004567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study.
    Wang Y; Yang Q; Li J; Yang J; Zhong C
    Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of C
    Miao F; Jiang H; Cheng XL
    J Mol Graph Model; 2021 Jul; 106():107911. PubMed ID: 33848949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling solute interactions with functionalized graphene membranes: towards facile membrane-level engineering.
    Arya V; Chaudhuri A; Bakli C
    Nanoscale; 2022 Nov; 14(44):16661-16672. PubMed ID: 36330851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic theory of gas separation in a nanopore and comparison to molecular dynamics simulation.
    ten Bosch A
    J Chem Phys; 2005 Feb; 122(8):84711. PubMed ID: 15836081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore.
    Lv W; Liu S; Li X; Wu R
    Electrophoresis; 2014 Apr; 35(8):1144-51. PubMed ID: 24459097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physisorption of nucleobases on graphene: a comparative van der Waals study.
    Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS
    J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.