BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 30816694)

  • 1. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics.
    Hosseinzadeh P; Lu Y
    Biochim Biophys Acta; 2016 May; 1857(5):557-581. PubMed ID: 26301482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design Strategies for Redox Active Metalloenzymes: Applications in Hydrogen Production.
    Alcala-Torano R; Sommer DJ; Bahrami Dizicheh Z; Ghirlanda G
    Methods Enzymol; 2016; 580():389-416. PubMed ID: 27586342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of dinuclear manganese cofactors for bacterial reaction centers.
    Olson TL; Espiritu E; Edwardraja S; Simmons CR; Williams JC; Ghirlanda G; Allen JP
    Biochim Biophys Acta; 2016 May; 1857(5):539-547. PubMed ID: 26392146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis.
    Lam Q; Kato M; Cheruzel L
    Biochim Biophys Acta; 2016 May; 1857(5):589-597. PubMed ID: 26392147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural principles for computational and de novo design of 4Fe-4S metalloproteins.
    Nanda V; Senn S; Pike DH; Rodriguez-Granillo A; Hansen WA; Khare SD; Noy D
    Biochim Biophys Acta; 2016 May; 1857(5):531-538. PubMed ID: 26449207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electron transfer of heme- and molybdopterin cofactor-containing chicken liver sulfite oxidase on alkanethiol-modified gold electrodes.
    Ferapontova EE; Ruzgas T; Gorton L
    Anal Chem; 2003 Sep; 75(18):4841-50. PubMed ID: 14674462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De Novo Design of Iron-Sulfur Proteins.
    Dizicheh ZB; Halloran N; Asma W; Ghirlanda G
    Methods Enzymol; 2017; 595():33-53. PubMed ID: 28882205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme.
    Mirts EN; Petrik ID; Hosseinzadeh P; Nilges MJ; Lu Y
    Science; 2018 Sep; 361(6407):1098-1101. PubMed ID: 30213908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic interaction between redox cofactors in photosynthetic reaction centers.
    Alric J; Cuni A; Maki H; Nagashima KV; Verméglio A; Rappaport F
    J Biol Chem; 2004 Nov; 279(46):47849-55. PubMed ID: 15347641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De Novo Construction of Redox Active Proteins.
    Moser CC; Sheehan MM; Ennist NM; Kodali G; Bialas C; Englander MT; Discher BM; Dutton PL
    Methods Enzymol; 2016; 580():365-88. PubMed ID: 27586341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length, time, and energy scales of photosystems.
    Moser CC; Page CC; Cogdell RJ; Barber J; Wraight CA; Dutton PL
    Adv Protein Chem; 2003; 63():71-109. PubMed ID: 12629967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.