These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30816863)

  • 1. Ammonia-based aeration control with optimal SRT control: improved performance and lower energy consumption.
    Schraa O; Rieger L; Alex J; Miletić I
    Water Sci Technol; 2019 Jan; 79(1):63-72. PubMed ID: 30816863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot-scale comparison of biological nutrient removal (BNR) using intermittent and continuous ammonia-based low dissolved oxygen aeration control systems.
    Stewart RD; Bashar R; Amstadt C; Uribe-Santos GA; McMahon KD; Seib M; Noguera DR
    Water Sci Technol; 2022 Jan; 85(2):578-590. PubMed ID: 35100140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems.
    Fan H; Qi L; Liu G; Zhang Y; Fan Q; Wang H
    J Environ Sci (China); 2017 May; 55():224-235. PubMed ID: 28477817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of aeration control strategies for biofilm-based partial nitritation/anammox systems.
    Schraa O; Rosenthal A; Wade MJ; Rieger L; Miletić I; Alex J
    Water Sci Technol; 2020 Apr; 81(8):1757-1765. PubMed ID: 32644968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of sensor driven aeration control strategies for improved understanding of simultaneous nitrification/denitrification.
    Klaus S; Bott CB
    Water Environ Res; 2020 Nov; 92(11):1999-2014. PubMed ID: 32400904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of ammonia removal in activated sludge process with feedforward-feedback aeration controllers.
    Vrecko D; Hvala N; Stare A; Burica O; Strazar M; Levstek M; Cerar P; Podbevsek S
    Water Sci Technol; 2006; 53(4-5):125-32. PubMed ID: 16722062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrification of ammonia nitrogen high concentration in membrane assisted bioreactor.
    Zabczyński S; Surmacz-Górska J; Miksch K
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):93-100. PubMed ID: 15296142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of oxygen on partial nitrification in a membrane bioreactor].
    Wul X; Zheng P
    Sheng Wu Gong Cheng Xue Bao; 2014 Dec; 30(12):1828-34. PubMed ID: 26016372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of long solids retention time activated sludge process for rural residential community.
    Campbell K; Wang J; Tucker R; Struemph C
    Water Environ Res; 2021 Feb; 93(2):174-185. PubMed ID: 32706405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal aeration control in a nitrifying activated sludge process.
    Amand L; Carlsson B
    Water Res; 2012 May; 46(7):2101-10. PubMed ID: 22341831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dissolved oxygen conditions on nitrogen removal in continuously fed intermittent-aeration process with two tanks.
    Hidaka T; Yamada H; Kawamura M; Tsuno H
    Water Sci Technol; 2002; 45(12):181-8. PubMed ID: 12201101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.
    Sun J; Liang P; Yan X; Zuo K; Xiao K; Xia J; Qiu Y; Wu Q; Wu S; Huang X; Qi M; Wen X
    Water Res; 2016 Apr; 93():205-213. PubMed ID: 26905799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Savings with upgraded performance through improved activated sludge denitrification in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant.
    Jobbágy A; Tardy GM; Palkó G; Benáková A; Krhutková O; Wanner J
    Water Sci Technol; 2008; 57(8):1287-93. PubMed ID: 18469403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor bias impact on efficient aeration control during diurnal load variations.
    Samuelsson O; Olsson G; Lindblom E; Björk A; Carlsson B
    Water Sci Technol; 2021 Mar; 83(6):1335-1346. PubMed ID: 33767040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonia-based intermittent aeration control optimized for efficient nitrogen removal.
    Regmi P; Bunce R; Miller MW; Park H; Chandran K; Wett B; Murthy S; Bott CB
    Biotechnol Bioeng; 2015 Oct; 112(10):2060-7. PubMed ID: 26058705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen transfer in membrane bioreactors treating synthetic greywater.
    Henkel J; Lemac M; Wagner M; Cornel P
    Water Res; 2009 Apr; 43(6):1711-9. PubMed ID: 19217638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the role of activated sludge in oxygen transfer: Effects of sludge settleability, solids retention time, and nitrification reaction.
    Campbell K; Wang J
    Water Environ Res; 2022 Nov; 94(11):e10806. PubMed ID: 36352319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pilot-scale evaluation of separate-stage nitrification using an attached-growth, moving-bed media process.
    Zimmerman RA; Richard D; Bradshaw AT; Craddock PP
    Water Environ Res; 2003; 75(5):422-33. PubMed ID: 14587953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sludge settling and online NAD(P)H fluorescence profiles in wastewater treatment bioreactors operated at low dissolved oxygen concentrations.
    Huang L; Ju LK
    Water Res; 2007 May; 41(9):1877-84. PubMed ID: 17363027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.