These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 30817882)

  • 1. Efficient Micro/Nanoparticle Concentration using Direct Current-Induced Thermal Buoyancy Convection for Multiple Liquid Media.
    Zhang K; Ren Y; Tao Y; Liu W; Jiang T; Jiang H
    Anal Chem; 2019 Apr; 91(7):4457-4465. PubMed ID: 30817882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Particle Focusing and Switching in Continuous Flow via Controllable Thermal Buoyancy Convection.
    Zhang K; Ren Y; Hou L; Jiang T; Jiang H
    Anal Chem; 2020 Feb; 92(3):2778-2786. PubMed ID: 31909587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient particle and droplet manipulation utilizing the combined thermal buoyancy convection and temperature-enhanced rotating induced-charge electroosmotic flow.
    Zhang K; Ren Y; Tao Y; Deng X; Liu W; Jiang T; Jiang H
    Anal Chim Acta; 2020 Feb; 1096():108-119. PubMed ID: 31883577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Microswimmer Manipulation in Multiple Microfluidic Systems Utilizing Thermal Buoyancy-Capillary Convection.
    Zhang K; Ren Y; Zhao M; Jiang T; Hou L; Jiang H
    Anal Chem; 2021 Feb; 93(4):2560-2569. PubMed ID: 33410659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A portable microfluidic device for thermally controlled granular sample manipulation.
    Zhang K; Xiang W; Jia N; Yu M; Liu J; Xie Z
    Lab Chip; 2024 Jan; 24(3):549-560. PubMed ID: 38168724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible droplet transportation and coalescence via controllable thermal fields.
    Zhang K; Xiang W; Liu J; Xie Z
    Anal Chim Acta; 2023 Oct; 1277():341669. PubMed ID: 37604623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optofluidic conveyor for particle transportation based on a fiber array and photothermal convection.
    Zhan W; Wu R; Gao K; Zheng J; Song W
    Lab Chip; 2020 Oct; 20(21):4063-4070. PubMed ID: 33021302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2016 Dec; 88(23):11791-11798. PubMed ID: 27806196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation.
    Chen X; Ren Y; Liu W; Feng X; Jia Y; Tao Y; Jiang H
    Anal Chem; 2017 Sep; 89(17):9583-9592. PubMed ID: 28783330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microparticle manipulation using laser-induced thermophoresis and thermal convection flow.
    Qian Y; Neale SL; Marsh JH
    Sci Rep; 2020 Nov; 10(1):19169. PubMed ID: 33154506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2018 Oct; 90(19):11461-11469. PubMed ID: 30192521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optothermal Microparticle Oscillator Induced by Marangoni and Thermal Convection.
    Meng C; Lu F; Zhang NQ; Zhou J; Yu P; Zhong MC
    Langmuir; 2024 Apr; 40(14):7463-7470. PubMed ID: 38551336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Particle Trapping, Switching, and Sorting Utilizing a Combination of Dielectrophoresis and Alternating Current Electrothermal Flow.
    Sun H; Ren Y; Hou L; Tao Y; Liu W; Jiang T; Jiang H
    Anal Chem; 2019 May; 91(9):5729-5738. PubMed ID: 30938976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced charge electro-osmotic particle separation.
    Chen X; Ren Y; Hou L; Feng X; Jiang T; Jiang H
    Nanoscale; 2019 Mar; 11(13):6410-6421. PubMed ID: 30888357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Area cooling enables thermal positioning and manipulation of single cells.
    Shen Y; Yalikun Y; Aishan Y; Tanaka N; Sato A; Tanaka Y
    Lab Chip; 2020 Oct; 20(20):3733-3743. PubMed ID: 33000103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective cell trapping using PDMS microspheres in an acoustofluidic chip.
    Yin D; Xu G; Wang M; Shen M; Xu T; Zhu X; Shi X
    Colloids Surf B Biointerfaces; 2017 Sep; 157():347-354. PubMed ID: 28622655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An opto-thermal approach for assembling yeast cells by laser heating of a trapped light absorbing particle.
    Zhang B; Zhang XF; Shao M; Meng C; Ji F; Zhong MC
    Rev Sci Instrum; 2023 Mar; 94(3):034105. PubMed ID: 37012788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.