BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30817886)

  • 1. Bulk Nanobubbles Fabricated by Repeated Compression of Microbubbles.
    Jin J; Feng Z; Yang F; Gu N
    Langmuir; 2019 Mar; 35(12):4238-4245. PubMed ID: 30817886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bulk nanobubbles: Production and investigation of their formation/stability mechanism.
    Michailidi ED; Bomis G; Varoutoglou A; Kyzas GZ; Mitrikas G; Mitropoulos AC; Efthimiadou EK; Favvas EP
    J Colloid Interface Sci; 2020 Mar; 564():371-380. PubMed ID: 31918204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective.
    Babu KS; Amamcharla JK
    Crit Rev Food Sci Nutr; 2023; 63(28):9262-9281. PubMed ID: 35467989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel lactoferrin-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) copolymer nanobubbles for tumor-targeting ultrasonic imaging.
    Luo B; Liang H; Zhang S; Qin X; Liu X; Liu W; Zeng F; Wu Y; Yang X
    Int J Nanomedicine; 2015; 10():5805-17. PubMed ID: 26396514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation and Stability of Bulk Nanobubbles.
    Oh SH; Kim JM
    Langmuir; 2017 Apr; 33(15):3818-3823. PubMed ID: 28368115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raw water clarification by flotation with microbubbles and nanobubbles generated with a multiphase pump.
    Azevedo A; Etchepare R; Rubio J
    Water Sci Technol; 2017 May; 75(10):2342-2349. PubMed ID: 28541942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Bulk Nanobubbles Formed by Using a Porous Alumina Film with Ordered Nanopores.
    Ma T; Kimura Y; Yamamoto H; Feng X; Hirano-Iwata A; Niwano M
    J Phys Chem B; 2020 Jun; 124(24):5067-5072. PubMed ID: 32437155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Generation of Monodisperse Nanobubbles by Selective Gas Dissolution.
    Xu J; Salari A; Wang Y; He X; Kerr L; Darbandi A; de Leon AC; Exner AA; Kolios MC; Yuen D; Tsai SSH
    Small; 2021 May; 17(20):e2100345. PubMed ID: 33811441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrusion: A New Method for Rapid Formulation of High-Yield, Monodisperse Nanobubbles.
    Counil C; Abenojar E; Perera R; Exner AA
    Small; 2022 Jun; 18(24):e2200810. PubMed ID: 35587613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of Oxygen Nanobubbles under Freshwater Conditions.
    Soyluoglu M; Kim D; Zaker Y; Karanfil T
    Water Res; 2021 Nov; 206():117749. PubMed ID: 34678695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis.
    Gao Z; Wu W; Sun W; Wang B
    Langmuir; 2021 Sep; 37(38):11281-11291. PubMed ID: 34520212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial nanobubbles are leaky: permeability of the gas/water interface.
    German SR; Wu X; An H; Craig VS; Mega TL; Zhang X
    ACS Nano; 2014 Jun; 8(6):6193-201. PubMed ID: 24863586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of a novel silicon-modified nanobubble.
    Liu J; Zhang B; Li M; Zhou M; Li F; Huang X; Pan M; Xue L; Yan F
    PLoS One; 2017; 12(5):e0178031. PubMed ID: 28557995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of electrolytes and surfactants on generation and longevity of carbon dioxide nanobubbles.
    Phan K; Truong T; Wang Y; Bhandari B
    Food Chem; 2021 Nov; 363():130299. PubMed ID: 34147892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanobubble applications in aquaculture industry for improving harvest yield, wastewater treatment, and disease control.
    Yaparatne S; Morón-López J; Bouchard D; Garcia-Segura S; Apul OG
    Sci Total Environ; 2024 Jun; 931():172687. PubMed ID: 38663593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.
    Ahmed AKA; Sun C; Hua L; Zhang Z; Zhang Y; Zhang W; Marhaba T
    Chemosphere; 2018 Jul; 203():327-335. PubMed ID: 29626810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastable shelled PFC nanobubbles: A platform for ultrasound-assisted diagnostics, and therapy.
    Hanieh PN; Ricci C; Bettucci A; Marotta R; Moran CM; Cantù L; Carafa M; Rinaldi F; Del Favero E; Marianecci C
    Nanomedicine; 2022 Nov; 46():102611. PubMed ID: 36228995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Internal Pressures and Long-Term Stability of Nanobubbles in Water.
    Shi X; Xue S; Marhaba T; Zhang W
    Langmuir; 2021 Feb; 37(7):2514-2522. PubMed ID: 33538170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of targeted theranostic red blood cell membranes-based nanobubbles for treatment of colon adenocarcinoma.
    Ghasemzadeh T; Hasannia M; Abnous K; Taghdisi SM; Nekooei S; Nekooei N; Ramezani M; Alibolandi M
    Expert Opin Drug Deliv; 2023 Jan; 20(1):131-143. PubMed ID: 36427011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indocyanine Green Assembled Nanobubbles with Enhanced Fluorescence and Photostability.
    Yang L; Huang B; Chen F; Jin J; Qin Z; Yang F; Li Y; Gu N
    Langmuir; 2020 Nov; 36(43):12983-12989. PubMed ID: 33085898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.