These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30817907)

  • 21. Nitration of tyrosines 46 and 48 induces the specific degradation of cytochrome c upon change of the heme iron state to high-spin.
    Díaz-Moreno I; García-Heredia JM; Díaz-Quintana A; Teixeira M; De la Rosa MA
    Biochim Biophys Acta; 2011 Dec; 1807(12):1616-23. PubMed ID: 21967884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myoglobin-catalyzed tyrosine nitration: no need for peroxynitrite.
    Kilinc K; Kilinc A; Wolf RE; Grisham MB
    Biochem Biophys Res Commun; 2001 Jul; 285(2):273-6. PubMed ID: 11444837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular basis for the electric field modulation of cytochrome C structure and function.
    De Biase PM; Paggi DA; Doctorovich F; Hildebrandt P; Estrin DA; Murgida DH; Marti MA
    J Am Chem Soc; 2009 Nov; 131(44):16248-56. PubMed ID: 19886701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of Fully Reversible, pH-Sensitive Inhibition of Human Glutamine Synthetase by Tyrosine Nitration.
    Frieg B; Görg B; Qvartskhava N; Jeitner T; Homeyer N; Häussinger D; Gohlke H
    J Chem Theory Comput; 2020 Jul; 16(7):4694-4705. PubMed ID: 32551588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational stability and dynamics of cytochrome c affect its alkaline isomerization.
    Tomásková N; Varhac R; Zoldák G; Oleksáková L; Sedláková D; Sedlák E
    J Biol Inorg Chem; 2007 Feb; 12(2):257-66. PubMed ID: 17120073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of Ionic Liquid-Assisted Refolding of Denatured Cytochrome c: A Study of Preferential Interactions toward Renaturation.
    Singh UK; Patel R
    Mol Pharm; 2018 Jul; 15(7):2684-2697. PubMed ID: 29767978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states.
    Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional role of a protein foldon--an Omega-loop foldon controls the alkaline transition in ferricytochrome c.
    Maity H; Rumbley JN; Englander SW
    Proteins; 2006 May; 63(2):349-55. PubMed ID: 16287119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct voltammetric observation of redox driven changes in axial coordination and intramolecular rearrangement of the phenylalanine-82-histidine variant of yeast iso-1-cytochrome c.
    Feinberg BA; Liu X; Ryan MD; Schejter A; Zhang C; Margoliash E
    Biochemistry; 1998 Sep; 37(38):13091-101. PubMed ID: 9748315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Compact Structure of Cytochrome c Trapped in a Lysine-Ligated State: Loop Refolding and Functional Implications of a Conformational Switch.
    Amacher JF; Zhong F; Lisi GP; Zhu MQ; Alden SL; Hoke KR; Madden DR; Pletneva EV
    J Am Chem Soc; 2015 Jul; 137(26):8435-49. PubMed ID: 26038984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the electrostatic interaction on the redox reaction of positively charged cytochrome C adsorbed on the negatively charged surfaces of acid-terminated alkanethiol monolayers on a Au(111) electrode.
    Imabayashi S; Mita T; Kakiuchi T
    Langmuir; 2005 Feb; 21(4):1470-4. PubMed ID: 15697296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region.
    Tomášková N; Varhač R; Lysáková V; Musatov A; Sedlák E
    Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1073-1083. PubMed ID: 30282605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free energy of transition for the individual alkaline conformers of yeast iso-1-cytochrome c.
    Battistuzzi G; Borsari M; De Rienzo F; Di Rocco G; Ranieri A; Sola M
    Biochemistry; 2007 Feb; 46(6):1694-702. PubMed ID: 17243773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal fluctuations determine the electron-transfer rates of cytochrome c in electrostatic and covalent complexes.
    Ly HK; Marti MA; Martin DF; Alvarez-Paggi D; Meister W; Kranich A; Weidinger IM; Hildebrandt P; Murgida DH
    Chemphyschem; 2010 Apr; 11(6):1225-35. PubMed ID: 20376873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electric-field-induced redox potential shifts of tetraheme cytochromes c3 immobilized on self-assembled monolayers: surface-enhanced resonance Raman spectroscopy and simulation studies.
    Rivas L; Soares CM; Baptista AM; Simaan J; Di Paolo RE; Murgida DH; Hildebrandt P
    Biophys J; 2005 Jun; 88(6):4188-99. PubMed ID: 15764652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo.
    Lee I; Salomon AR; Yu K; Doan JW; Grossman LI; Hüttemann M
    Biochemistry; 2006 Aug; 45(30):9121-8. PubMed ID: 16866357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The pH dependence of the 695 nm charge transfer band reveals the population of an intermediate state of the alkaline transition of ferricytochrome c at low ion concentrations.
    Verbaro D; Hagarman A; Soffer J; Schweitzer-Stenner R
    Biochemistry; 2009 Apr; 48(13):2990-6. PubMed ID: 19222214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox protein electron-transfer mechanisms: electrostatic interactions as a determinant of reaction site in c-type cytochromes.
    Cheddar G; Meyer TE; Cusanovich MA; Stout CD; Tollin G
    Biochemistry; 1989 Jul; 28(15):6318-22. PubMed ID: 2551370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary alkaline transition in human cytochrome c.
    Ying T; Zhong F; Xie J; Feng Y; Wang ZH; Huang ZX; Tan X
    J Bioenerg Biomembr; 2009 Jun; 41(3):251-7. PubMed ID: 19593652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c.
    Gu J; Shin DW; Pletneva EV
    Biochemistry; 2017 Jun; 56(23):2950-2966. PubMed ID: 28474881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.