These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 30817907)
41. Gated electron transfer of yeast iso-1 cytochrome c on self-assembled monolayer-coated electrodes. Feng JJ; Murgida DH; Kuhlmann U; Utesch T; Mroginski MA; Hildebrandt P; Weidinger IM J Phys Chem B; 2008 Nov; 112(47):15202-11. PubMed ID: 18975895 [TBL] [Abstract][Full Text] [Related]
42. Nitration of specific tyrosine residues of cytochrome C is associated with caspase-cascade inactivation. Nakagawa H; Komai N; Takusagawa M; Miura Y; Toda T; Miyata N; Ozawa T; Ikota N Biol Pharm Bull; 2007 Jan; 30(1):15-20. PubMed ID: 17202652 [TBL] [Abstract][Full Text] [Related]
43. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers. de Groot MT; Evers TH; Merkx M; Koper MT Langmuir; 2007 Jan; 23(2):729-36. PubMed ID: 17209627 [TBL] [Abstract][Full Text] [Related]
44. Bound Flavin-Cytochrome Model of Extracellular Electron Transfer in Shewanella oneidensis: Analysis by Free Energy Molecular Dynamics Simulations. Hong G; Pachter R J Phys Chem B; 2016 Jun; 120(25):5617-24. PubMed ID: 27266856 [TBL] [Abstract][Full Text] [Related]
45. Alternative Conformations of Cytochrome c: Structure, Function, and Detection. Hannibal L; Tomasina F; Capdevila DA; Demicheli V; Tórtora V; Alvarez-Paggi D; Jemmerson R; Murgida DH; Radi R Biochemistry; 2016 Jan; 55(3):407-28. PubMed ID: 26720007 [TBL] [Abstract][Full Text] [Related]
46. Phosphate mediated adsorption and electron transfer of cytochrome c. A time-resolved SERR spectroelectrochemical study. Capdevila DA; Marmisollé WA; Williams FJ; Murgida DH Phys Chem Chem Phys; 2013 Apr; 15(15):5386-94. PubMed ID: 23000972 [TBL] [Abstract][Full Text] [Related]
47. Involvement of protein radical, protein aggregation, and effects on NO metabolism in the hypochlorite-mediated oxidation of mitochondrial cytochrome c. Chen YR; Chen CL; Liu X; Li H; Zweier JL; Mason RP Free Radic Biol Med; 2004 Nov; 37(10):1591-603. PubMed ID: 15477010 [TBL] [Abstract][Full Text] [Related]
48. The role of protein dynamics and thermal fluctuations in regulating cytochrome c/cytochrome c oxidase electron transfer. Alvarez-Paggi D; Zitare U; Murgida DH Biochim Biophys Acta; 2014 Jul; 1837(7):1196-207. PubMed ID: 24502917 [TBL] [Abstract][Full Text] [Related]
49. Specific nitration of tyrosines 46 and 48 makes cytochrome c assemble a non-functional apoptosome. García-Heredia JM; Díaz-Moreno I; Díaz-Quintana A; Orzáez M; Navarro JA; Hervás M; De la Rosa MA FEBS Lett; 2012 Jan; 586(2):154-8. PubMed ID: 22192356 [TBL] [Abstract][Full Text] [Related]
50. Factors determining the selectivity of protein tyrosine nitration. Souza JM; Daikhin E; Yudkoff M; Raman CS; Ischiropoulos H Arch Biochem Biophys; 1999 Nov; 371(2):169-78. PubMed ID: 10545203 [TBL] [Abstract][Full Text] [Related]
51. Nitric oxide, oxidants, and protein tyrosine nitration. Radi R Proc Natl Acad Sci U S A; 2004 Mar; 101(12):4003-8. PubMed ID: 15020765 [TBL] [Abstract][Full Text] [Related]
52. Mapping the electron transfer interface between cytochrome b5 and cytochrome c. Ren Y; Wang WH; Wang YH; Case M; Qian W; McLendon G; Huang ZX Biochemistry; 2004 Mar; 43(12):3527-36. PubMed ID: 15035623 [TBL] [Abstract][Full Text] [Related]
53. The states of tyrosyl residues in thermolysin as examined by nitration and pH-dependent ionization. Lee SB; Inouye K; Tonomura B J Biochem; 1997 Feb; 121(2):231-7. PubMed ID: 9089395 [TBL] [Abstract][Full Text] [Related]
54. Cytochrome c at charged interfaces. 1. Conformational and redox equilibria at the electrode/electrolyte interface probed by surface-enhanced resonance Raman spectroscopy. Hildebrandt P; Stockburger M Biochemistry; 1989 Aug; 28(16):6710-21. PubMed ID: 2551378 [TBL] [Abstract][Full Text] [Related]
55. Stability, redox parameters and electrocatalytic activity of a cytochrome domain from a new subfamily. Molinas MF; Benavides L; Castro MA; Murgida DH Bioelectrochemistry; 2015 Oct; 105():25-33. PubMed ID: 25978786 [TBL] [Abstract][Full Text] [Related]
56. Electrostatic properties of cytochrome f: implications for docking with plastocyanin. Pearson DC; Gross EL; David ES Biophys J; 1996 Jul; 71(1):64-76. PubMed ID: 8804589 [TBL] [Abstract][Full Text] [Related]
57. Structural transformation of cytochrome c and apo cytochrome c induced by sulfonated polystyrene. Gong J; Yao P; Duan H; Jiang M; Gu S; Chunyu L Biomacromolecules; 2003; 4(5):1293-300. PubMed ID: 12959597 [TBL] [Abstract][Full Text] [Related]
58. pKa values in proteins determined by electrostatics applied to molecular dynamics trajectories. Meyer T; Knapp EW J Chem Theory Comput; 2015 Jun; 11(6):2827-40. PubMed ID: 26575575 [TBL] [Abstract][Full Text] [Related]
59. Structural and redox properties of mitochondrial cytochrome c co-sorbed with phosphate on hematite (alpha-Fe2O3) surfaces. Khare N; Eggleston CM; Lovelace DM; Boese SW J Colloid Interface Sci; 2006 Nov; 303(2):404-14. PubMed ID: 16945384 [TBL] [Abstract][Full Text] [Related]
60. Double mutant studies identify electrostatic interactions that are important for docking cytochrome c2 onto the bacterial reaction center. Tetreault M; Cusanovich M; Meyer T; Axelrod H; Okamura MY Biochemistry; 2002 May; 41(18):5807-15. PubMed ID: 11980484 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]