BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

799 related articles for article (PubMed ID: 30817963)

  • 1. Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis.
    Bilal M; Cui J; Iqbal HMN
    Int J Biol Macromol; 2019 Jun; 130():186-196. PubMed ID: 30817963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point.
    Bilal M; Iqbal HMN; Guo S; Hu H; Wang W; Zhang X
    Int J Biol Macromol; 2018 Mar; 108():893-901. PubMed ID: 29102791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocatalysts: application and engineering for industrial purposes.
    Jemli S; Ayadi-Zouari D; Hlima HB; Bejar S
    Crit Rev Biotechnol; 2016; 36(2):246-58. PubMed ID: 25373789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts.
    Bernal C; Rodríguez K; Martínez R
    Biotechnol Adv; 2018; 36(5):1470-1480. PubMed ID: 29894813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of novel enzyme biocatalysts for industrial bioprocess: Harnessing the power of protein engineering, high throughput screening and synthetic biology.
    Madhavan A; Arun KB; Binod P; Sirohi R; Tarafdar A; Reshmy R; Kumar Awasthi M; Sindhu R
    Bioresour Technol; 2021 Apr; 325():124617. PubMed ID: 33450638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution: tailoring biocatalysts for industrial applications.
    Kumar A; Singh S
    Crit Rev Biotechnol; 2013 Dec; 33(4):365-78. PubMed ID: 22985113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.
    Singh RK; Tiwari MK; Singh R; Lee JK
    Int J Mol Sci; 2013 Jan; 14(1):1232-77. PubMed ID: 23306150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving and repurposing biocatalysts via directed evolution.
    Denard CA; Ren H; Zhao H
    Curr Opin Chem Biol; 2015 Apr; 25():55-64. PubMed ID: 25579451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in biocatalysis by directed enzyme evolution.
    Rubin-Pitel SB; Zhao H
    Comb Chem High Throughput Screen; 2006 May; 9(4):247-57. PubMed ID: 16724916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities.
    Bilal M; Asgher M; Shah SZH; Iqbal HMN
    Int J Biol Macromol; 2019 Aug; 135():677-690. PubMed ID: 31152838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector - current status and future trends.
    Bilal M; Iqbal HMN
    Crit Rev Food Sci Nutr; 2020; 60(12):2052-2066. PubMed ID: 31210055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design.
    Bilal M; Asgher M; Cheng H; Yan Y; Iqbal HMN
    Crit Rev Biotechnol; 2019 Mar; 39(2):202-219. PubMed ID: 30394121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed evolution of enzymes and pathways for industrial biocatalysis.
    Zhao H; Chockalingam K; Chen Z
    Curr Opin Biotechnol; 2002 Apr; 13(2):104-10. PubMed ID: 11950559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities.
    Rueda N; Dos Santos JC; Ortiz C; Torres R; Barbosa O; Rodrigues RC; Berenguer-Murcia Á; Fernandez-Lafuente R
    Chem Rec; 2016 Jun; 16(3):1436-55. PubMed ID: 27166751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects.
    Zdarta J; Kołodziejczak-Radzimska A; Bachosz K; Rybarczyk A; Bilal M; Iqbal HMN; Buszewski B; Jesionowski T
    Adv Colloid Interface Sci; 2023 May; 315():102889. PubMed ID: 37030261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A roadmap to directed enzyme evolution and screening systems for biotechnological applications.
    Martínez R; Schwaneberg U
    Biol Res; 2013; 46(4):395-405. PubMed ID: 24510142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Enzymatic catalysis in non-aqueous solvents].
    Wang L; Chen Y
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):1789-94. PubMed ID: 20352953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the third wave of biocatalysis.
    Bornscheuer UT; Huisman GW; Kazlauskas RJ; Lutz S; Moore JC; Robins K
    Nature; 2012 May; 485(7397):185-94. PubMed ID: 22575958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use.
    Kataoka M; Miyakawa T; Shimizu S; Tanokura M
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5747-57. PubMed ID: 27188776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications.
    Ravikumar Y; Nadarajan SP; Hyeon Yoo T; Lee CS; Yun H
    Biotechnol J; 2015 Dec; 10(12):1862-76. PubMed ID: 26399851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.