BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30818009)

  • 1. The ReFOLD assay for protein formulation studies and prediction of protein aggregation during long-term storage.
    Svilenov H; Winter G
    Eur J Pharm Biopharm; 2019 Apr; 137():131-139. PubMed ID: 30818009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions.
    Brummitt RK; Nesta DP; Roberts CJ
    J Pharm Sci; 2011 Oct; 100(10):4234-43. PubMed ID: 21671226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthogonal Techniques to Study the Effect of pH, Sucrose, and Arginine Salts on Monoclonal Antibody Physical Stability and Aggregation During Long-Term Storage.
    Svilenov HL; Kulakova A; Zalar M; Golovanov AP; Harris P; Winter G
    J Pharm Sci; 2020 Jan; 109(1):584-594. PubMed ID: 31689429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulations That Suppress Aggregation During Long-Term Storage of a Bispecific Antibody are Characterized by High Refoldability and Colloidal Stability.
    Svilenov HL; Winter G
    J Pharm Sci; 2020 Jun; 109(6):2048-2058. PubMed ID: 32194093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Unfolding Reversibility Studies and Molecular Dynamics Simulations to Select Aggregation-Resistant Antibodies.
    Berner C; Menzen T; Winter G; Svilenov HL
    Mol Pharm; 2021 Jun; 18(6):2242-2253. PubMed ID: 33928776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid sample-saving biophysical characterisation and long-term storage stability of liquid interferon alpha2a formulations: Is there a correlation?
    Svilenov H; Winter G
    Int J Pharm; 2019 May; 562():42-50. PubMed ID: 30878589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies.
    Brader ML; Estey T; Bai S; Alston RW; Lucas KK; Lantz S; Landsman P; Maloney KM
    Mol Pharm; 2015 Apr; 12(4):1005-17. PubMed ID: 25687223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse Proteolysis: An Orthogonal Tool for Protein Formulation Screening.
    Iyer LK; Phanse R; Xu M; Lan W; Krause ME; Bolgar M; Hart S
    J Pharm Sci; 2019 Feb; 108(2):842-850. PubMed ID: 30257193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding.
    Singh SK; Kolhe P; Mehta AP; Chico SC; Lary AL; Huang M
    Pharm Res; 2011 Apr; 28(4):873-85. PubMed ID: 21213025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship of PEG-induced precipitation with protein-protein interactions and aggregation rates of high concentration mAb formulations at 5 °C.
    Wälchli R; Fanizzi F; Massant J; Arosio P
    Eur J Pharm Biopharm; 2020 Jun; 151():53-60. PubMed ID: 32197816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Approach to Study the Physical Stability of Monoclonal Antibody Formulations-Dilution From a Denaturant.
    Svilenov H; Gentiluomo L; Friess W; Roessner D; Winter G
    J Pharm Sci; 2018 Dec; 107(12):3007-3013. PubMed ID: 30121313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational implications of an inversed pH-dependent antibody aggregation.
    Perico N; Purtell J; Dillon TM; Ricci MS
    J Pharm Sci; 2009 Sep; 98(9):3031-42. PubMed ID: 18803243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T
    Robinson MJ; Matejtschuk P; Bristow AF; Dalby PA
    Mol Pharm; 2018 Jan; 15(1):256-267. PubMed ID: 29141152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature and osmolytes on competing degradation routes for an IgG1 antibody.
    Roberts CJ; Nesta DP; Kim N
    J Pharm Sci; 2013 Oct; 102(10):3556-66. PubMed ID: 23873602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetate- and Citrate-Specific Ion Effects on Unfolding and Temperature-Dependent Aggregation Rates of Anti-Streptavidin IgG1.
    Barnett GV; Razinkov VI; Kerwin BA; Hillsley A; Roberts CJ
    J Pharm Sci; 2016 Mar; 105(3):1066-73. PubMed ID: 26886346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Aggregation in Frozen Trehalose Formulations: Effects of Composition, Cooling Rate, and Storage Temperature.
    Connolly BD; Le L; Patapoff TW; Cromwell MEM; Moore JMR; Lam P
    J Pharm Sci; 2015 Dec; 104(12):4170-4184. PubMed ID: 26398200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic rheology of a monoclonal antibody (IgG2) solution: implications for physical stability of proteins in high concentration formulations.
    Saluja A; Badkar AV; Zeng DL; Kalonia DS
    J Pharm Sci; 2007 Dec; 96(12):3181-95. PubMed ID: 17588261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic Unfolding and Aggregation Fingerprints of Monoclonal Antibodies Using Thermal Profiling.
    Melien R; Garidel P; Hinderberger D; Blech M
    Pharm Res; 2020 Apr; 37(4):78. PubMed ID: 32236701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Freeze/Thaw Process on Drug Substance Storage of Therapeutics.
    Rayfield WJ; Kandula S; Khan H; Tugcu N
    J Pharm Sci; 2017 Aug; 106(8):1944-1951. PubMed ID: 28343990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.