These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Response to dietary carbohydrates in European seabass (Dicentrarchus labrax) muscle tissue as revealed by NMR-based metabolomics. Jarak I; Tavares L; Palma M; Rito J; Carvalho RA; Viegas I Metabolomics; 2018 Jul; 14(7):95. PubMed ID: 30830389 [TBL] [Abstract][Full Text] [Related]
5. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles. Castro C; Corraze G; Pérez-Jiménez A; Larroquet L; Cluzeaud M; Panserat S; Oliva-Teles A Br J Nutr; 2015 Oct; 114(8):1143-56. PubMed ID: 26306559 [TBL] [Abstract][Full Text] [Related]
6. The partial substitution of digestible protein with gelatinized starch as an energy source reduces susceptibility to lipid oxidation in rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax) muscle. Alvarez MJ; López-Bote CJ; Diez A; Corraze G; Arzel J; Dias J; Kaushik SJ; Bautista JM J Anim Sci; 1999 Dec; 77(12):3322-9. PubMed ID: 10641880 [TBL] [Abstract][Full Text] [Related]
7. Contribution of dietary starch to hepatic and systemic carbohydrate fluxes in European seabass (Dicentrarchus labrax L.). Viegas I; Rito J; Jarak I; Leston S; Caballero-Solares A; Metón I; Pardal MA; Baanante IV; Jones JG Br J Nutr; 2015 May; 113(9):1345-54. PubMed ID: 25989995 [TBL] [Abstract][Full Text] [Related]
8. Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Dias J; Alvarez MJ; Arzel J; Corraze G; Diez A; Bautista JM; Kaushik SJ Comp Biochem Physiol A Mol Integr Physiol; 2005 Sep; 142(1):19-31. PubMed ID: 16087375 [TBL] [Abstract][Full Text] [Related]
9. An analysis of partial efficiencies of energy utilisation of different macronutrients by barramundi (Lates calcarifer) shows that starch restricts protein utilisation in carnivorous fish. Glencross BD; Blyth D; Bourne N; Cheers S; Irvin S; Wade NM Br J Nutr; 2017 Feb; 117(4):500-510. PubMed ID: 28290257 [TBL] [Abstract][Full Text] [Related]
10. Limitations to Starch Utilization in Barramundi ( Palma M; Trenkner LH; Rito J; Tavares LC; Silva E; Glencross BD; Jones JG; Wade NM; Viegas I Front Physiol; 2020; 11():205. PubMed ID: 32265728 [TBL] [Abstract][Full Text] [Related]
11. Dietary carbohydrate and lipid sources affect differently the oxidative status of European sea bass (Dicentrarchus labrax) juveniles. Castro C; Peréz-Jiménez A; Coutinho F; Díaz-Rosales P; Serra CA; Panserat S; Corraze G; Peres H; Oliva-Teles A Br J Nutr; 2015 Nov; 114(10):1584-93. PubMed ID: 26365262 [TBL] [Abstract][Full Text] [Related]
12. Reduction of persistent and semi-persistent organic pollutants in fillets of farmed European seabass (Dicentrarchus labrax) fed low fish oil diets. Ginés R; Camacho M; Henríquez-Hernández LA; Izquierdo M; Boada LD; Montero D; Robaina L; Zumbado M; Luzardo OP Sci Total Environ; 2018 Dec; 643():1239-1247. PubMed ID: 30189540 [TBL] [Abstract][Full Text] [Related]
13. Comparison of mammary lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil. Bernard L; Toral PG; Chilliard Y J Dairy Sci; 2017 Nov; 100(11):9338-9351. PubMed ID: 28888611 [TBL] [Abstract][Full Text] [Related]
14. A low-protein, high-carbohydrate diet increases the adipose lipid content without increasing the glycerol-3-phosphate or fatty acid content in growing rats. Buzelle SL; Santos MP; Baviera AM; Lopes CF; Garófalo MA; Navegantes LC; Kettelhut IC; Chaves VE; Kawashita NH Can J Physiol Pharmacol; 2010 Dec; 88(12):1157-65. PubMed ID: 21164562 [TBL] [Abstract][Full Text] [Related]
15. Impact of the replacement of dietary fish oil by animal fats and environmental salinity on the metabolic response of European Seabass (Dicentrarchus labrax). Silva-Brito F; Timóteo F; Esteves Â; Peixoto MJ; Ozorio R; Magnoni L Comp Biochem Physiol B Biochem Mol Biol; 2019 Jul; 233():46-59. PubMed ID: 31004746 [TBL] [Abstract][Full Text] [Related]
16. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Enes P; Panserat S; Kaushik S; Oliva-Teles A Comp Biochem Physiol A Mol Integr Physiol; 2006 Jan; 143(1):89-96. PubMed ID: 16343962 [TBL] [Abstract][Full Text] [Related]
17. Influence of abomasal carbohydrates on subcutaneous, omental, and mesenteric adipose lipogenic and lipolytic rates in growing beef steers. Baldwin RL; McLeod KR; McNamara JP; Elsasser TH; Baumann RG J Anim Sci; 2007 Sep; 85(9):2271-82. PubMed ID: 17468423 [TBL] [Abstract][Full Text] [Related]
18. Metabolic Effects of Dietary Glycerol Supplementation in Muscle and Liver of European Seabass and Rainbow Trout by Palma M; Tavares LC; Rito J; Henriques LF; Silva JG; Ozório R; Pardal MA; Magnoni LJ; Viegas I Metabolites; 2019 Sep; 9(10):. PubMed ID: 31569727 [TBL] [Abstract][Full Text] [Related]
19. Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides). Li X; Zheng S; Ma X; Cheng K; Wu G Amino Acids; 2020 Jul; 52(6-7):999-1016. PubMed ID: 32648068 [TBL] [Abstract][Full Text] [Related]
20. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Mourente G; Bell JG Comp Biochem Physiol B Biochem Mol Biol; 2006; 145(3-4):389-99. PubMed ID: 17055762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]