These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30818099)

  • 1. Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load.
    Ren G; Zhou M; Zhang Q; Xu X; Li Y; Su P; Paidar M; Bouzek K
    Water Res; 2019 May; 154():336-348. PubMed ID: 30818099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-Fenton with peroxi-coagulation as a feasible pre-treatment for high-strength refractory coke plant wastewater: Parameters optimization, removal behavior and kinetics analysis.
    Zhou X; Hou Z; Lv L; Song J; Yin Z
    Chemosphere; 2020 Jan; 238():124649. PubMed ID: 31466005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-treatment of coking industry wastewater by the electro-Fenton process.
    Güçlü D; Sahinkaya S; Sirin N
    Water Environ Res; 2013 May; 85(5):391-6. PubMed ID: 23789568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effects of simultaneous coupling ozonation and biodegradation for coking wastewater treatment: Advances in COD removal, toxic elimination, and microbial regulation.
    Cui B; Fu S; Hao X; Zhou D
    Chemosphere; 2023 Mar; 318():137956. PubMed ID: 36708779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient one-step advanced treatment of biologically pretreated coking wastewater by an integration of coagulation and adsorption process.
    Li J; Yuan X; Zhao H; Li F; Lei Z; Zhang Z
    Bioresour Technol; 2018 Jan; 247():1206-1209. PubMed ID: 28919474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Fe-loaded needle coke particle electrodes and utilisation in three-dimensional electro-Fenton oxidation of coking wastewater.
    Hu Y; Yu F; Bai Z; Wang Y; Zhang H; Gao X; Wang Y; Li X
    Chemosphere; 2022 Dec; 308(Pt 3):136544. PubMed ID: 36152828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed corona discharge for improving treatability of coking wastewater.
    Liu M; Preis S; Kornev I; Hu Y; Wei CH
    J Environ Sci (China); 2018 Feb; 64():306-316. PubMed ID: 29478652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of Coagulation and Ozone Catalytic Oxidation for Pretreating Coking Wastewater.
    Chen L; Xu Y; Sun Y
    Int J Environ Res Public Health; 2019 May; 16(10):. PubMed ID: 31096662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot-scale three-dimensional electrochemical reactor combined with anaerobic-anoxic-oxic system for advanced treatment of coking wastewater.
    Liu Y; Wu ZY; Peng P; Xie HB; Li XY; Xu J; Li WH
    J Environ Manage; 2020 Mar; 258():110021. PubMed ID: 31929062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide.
    Chu L; Wang J; Dong J; Liu H; Sun X
    Chemosphere; 2012 Jan; 86(4):409-14. PubMed ID: 22014660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of coking wastewater using a needle coke electro-Fenton cathode: optimizing of COD, NH
    Chi C; Zhou X; Wang Y; Gao X; Bai J; Guo Y; Ni J
    Water Sci Technol; 2023 Jul; 88(1):106-122. PubMed ID: 37452537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].
    Li HT; Li YP; Zhang AY; Cao HB; Li XG; Zhang Y
    Huan Jing Ke Xue; 2011 Jan; 32(1):171-8. PubMed ID: 21404683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid peroxymonosulfate/activated carbon fiber-sequencing batch reactor system for efficient treatment of coking wastewater: Establishment and influential factors.
    Su B; Zhang W; Sun F; Quan X
    Bioresour Technol; 2024 Aug; 405():130907. PubMed ID: 38810707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes.
    Lai P; Zhao HZ; Wang C; Ni JR
    J Hazard Mater; 2007 Aug; 147(1-2):232-9. PubMed ID: 17267104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of phenol from steel wastewater by combined electrocoagulation with photo-Fenton.
    Malakootian M; Heidari MR
    Water Sci Technol; 2018 Nov; 78(5-6):1260-1267. PubMed ID: 30388082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biodegradability.
    Yu X; Xu R; Wei C; Wu H
    J Hazard Mater; 2016 Jan; 302():468-474. PubMed ID: 26547041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic pollution removal from coke plant wastewater using coking coal.
    Gao L; Li S; Wang Y; Sun H
    Water Sci Technol; 2015; 72(1):158-63. PubMed ID: 26114284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes.
    Kumar A; Nidheesh PV; Suresh Kumar M
    Chemosphere; 2018 Aug; 205():587-593. PubMed ID: 29715673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of organic pollutants in coke plant wastewater by micro-nanometer catalytic ozonation, A/A/O and reverse osmosis membrane.
    Feng N; Wang G; Kang X; Hu T; Wu H; Xie J
    Water Sci Technol; 2022 Oct; 86(7):1629-1641. PubMed ID: 36240300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater.
    Xing R; Zheng Z; Wen D
    J Environ Sci (China); 2015 Mar; 29():45-50. PubMed ID: 25766012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.