These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30818112)

  • 21. Cholinesterases in the Antarctic scallop Adamussium colbecki: characterization and sensitivity to pollutants.
    Bonacci S; Corsi I; Focardi S
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1481-8. PubMed ID: 19246092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-future levels of ocean acidification reduce fertilization success in a sea urchin.
    Havenhand JN; Buttler FR; Thorndyke MC; Williamson JE
    Curr Biol; 2008 Aug; 18(15):R651-R652. PubMed ID: 18682203
    [No Abstract]   [Full Text] [Related]  

  • 23. Building global change resilience: Concrete has the potential to ameliorate the negative effects of climate-driven ocean change on a newly-settled calcifying invertebrate.
    Mos B; Dworjanyn SA; Mamo LT; Kelaher BP
    Sci Total Environ; 2019 Jan; 646():1349-1358. PubMed ID: 30235620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures.
    Suckling CC; Clark MS; Richard J; Morley SA; Thorne MAS; Harper EM; Peck LS
    J Anim Ecol; 2015 May; 84(3):773-784. PubMed ID: 25491898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impacts of pharmaceutical drugs under ocean acidification: New data on single and combined long-term effects of carbamazepine on Scrobicularia plana.
    Freitas R; Almeida Â; Calisto V; Velez C; Moreira A; Schneider RJ; Esteves VI; Wrona FJ; Figueira E; Soares AMVM
    Sci Total Environ; 2016 Jan; 541():977-985. PubMed ID: 26473700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations.
    Ho MA; Price C; King CK; Virtue P; Byrne M
    Mar Environ Res; 2013 Sep; 90():136-41. PubMed ID: 23948149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).
    Wolfe K; Dworjanyn SA; Byrne M
    Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.
    Sheppard Brennand H; Soars N; Dworjanyn SA; Davis AR; Byrne M
    PLoS One; 2010 Jun; 5(6):e11372. PubMed ID: 20613879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.
    Evans TG; Chan F; Menge BA; Hofmann GE
    Mol Ecol; 2013 Mar; 22(6):1609-25. PubMed ID: 23317456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decreased pH impairs sea urchin resistance to predatory fish: A combined laboratory-field study to understand the fate of top-down processes in future oceans.
    Asnaghi V; Chindris A; Leggieri F; Scolamacchia M; Brundu G; Guala I; Loi B; Chiantore M; Farina S
    Mar Environ Res; 2020 Dec; 162():105194. PubMed ID: 33126114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lethal and sub-lethal effects of elevated CO2 concentrations on marine benthic invertebrates and fish.
    Lee C; Hong S; Kwon BO; Lee JH; Ryu J; Park YG; Kang SG; Khim JS
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):14945-56. PubMed ID: 27074931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ocean acidification effects on the stress response in a calcifying antarctic coastal organism: The case of Nacella concinna ecotypes.
    de Aranzamendi MC; Servetto N; Movilla J; Bettencourt R; Sahade R
    Mar Pollut Bull; 2021 May; 166():112218. PubMed ID: 33721687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fuel oil and dispersant toxicity to the Antarctic sea urchin (Sterechinus neumayeri).
    Alexander FJ; King CK; Reichelt-Brushett AJ; Harrison PL
    Environ Toxicol Chem; 2017 Jun; 36(6):1563-1571. PubMed ID: 27813135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of the sea urchin Heliocidaris crassispina from Hong Kong is robust to ocean acidification and copper contamination.
    Dorey N; Maboloc E; Chan KYK
    Aquat Toxicol; 2018 Dec; 205():1-10. PubMed ID: 30296660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the Antarctic sea urchin (Sterechinus neumayeri) transcriptome and mitogenome: a molecular resource for phylogenetics, ecophysiology and global change biology.
    Dilly GF; Gaitán-Espitia JD; Hofmann GE
    Mol Ecol Resour; 2015 Mar; 15(2):425-36. PubMed ID: 25143045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification.
    García E; Hernández JC; Clemente S
    Mar Environ Res; 2018 Aug; 139():35-45. PubMed ID: 29753493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retrospective biomonitoring of chemical contamination in the marine coastal environment of Terra Nova Bay (Ross Sea, Antarctica) by environmental specimen banking.
    Grotti M; Pizzini S; Abelmoschi ML; Cozzi G; Piazza R; Soggia F
    Chemosphere; 2016 Dec; 165():418-426. PubMed ID: 27668719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO
    Migliaccio O; Pinsino A; Maffioli E; Smith AM; Agnisola C; Matranga V; Nonnis S; Tedeschi G; Byrne M; Gambi MC; Palumbo A
    Sci Total Environ; 2019 Jul; 672():938-950. PubMed ID: 30981169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.
    Barry JP; Lovera C; Buck KR; Peltzer ET; Taylor JR; Walz P; Whaling PJ; Brewer PG
    Environ Sci Technol; 2014 Aug; 48(16):9890-7. PubMed ID: 25051305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of elevated levels of CO2 on animal mediated ecosystem function: the modification of sediment nutrient fluxes by burrowing urchins.
    Widdicombe S; Beesley A; Berge JA; Dashfield SL; McNeill CL; Needham HR; Øxnevad S
    Mar Pollut Bull; 2013 Aug; 73(2):416-27. PubMed ID: 23218873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.