These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30818127)

  • 1. Changes in the expression of the potassium channels TASK1, TASK3 and TRESK in a rat model of oral squamous cell carcinoma and their relation to malignancy.
    Zavala WD; Foscolo MR; Kunda PE; Cavicchia JC; Acosta CG
    Arch Oral Biol; 2019 Apr; 100():75-85. PubMed ID: 30818127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of p11 and heteromeric TASK channels in mouse adrenal cortical cells and H295R cells.
    Matsuoka H; Harada K; Sugawara A; Kim D; Inoue M
    Acta Histochem; 2022 Jul; 124(5):151898. PubMed ID: 35526370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model.
    Pollema-Mays SL; Centeno MV; Ashford CJ; Apkarian AV; Martina M
    Mol Cell Neurosci; 2013 Nov; 57():1-9. PubMed ID: 23994814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3.
    Wright PD; Veale EL; McCoull D; Tickle DC; Large JM; Ococks E; Gothard G; Kettleborough C; Mathie A; Jerman J
    Biochem Biophys Res Commun; 2017 Nov; 493(1):444-450. PubMed ID: 28882594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of p11 and Heteromeric TASK Channels in Rat Carotid Body Glomus Cells and Nerve Growth Factor-differentiated PC12 Cells.
    Matsuoka H; Pokorski M; Harada K; Yoshimura R; Inoue M
    J Histochem Cytochem; 2020 Oct; 68(10):679-690. PubMed ID: 32886017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leak K⁺ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour.
    Marsh B; Acosta C; Djouhri L; Lawson SN
    Mol Cell Neurosci; 2012 Mar; 49(3):375-86. PubMed ID: 22273507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of Proton-Sensitive GPR31, GPR151, TASK1 and TASK3 in Common Skin Tumors.
    Förch A; Wallner S; Zeman F; Ettl T; Brochhausen C; Schreml S
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-fat diet-induced vagal afferent dysfunction via upregulation of 2-pore domain potassium TRESK channel.
    Grabauskas G; Wu X; Zhou S; Li J; Gao J; Owyang C
    JCI Insight; 2019 Sep; 4(17):. PubMed ID: 31484832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular Localization of Homomeric TASK3 Channels and Its Presumed Functional Significances in Trigeminal Motoneurons.
    Saito M; Tanaka C; Toyoda H; Kang Y
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a region in the TASK3 two pore domain potassium channel that is critical for its blockade by methanandamide.
    Veale EL; Buswell R; Clarke CE; Mathie A
    Br J Pharmacol; 2007 Nov; 152(5):778-86. PubMed ID: 17828294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-pore domain potassium channels in the adrenal cortex.
    Bandulik S; Tauber P; Lalli E; Barhanin J; Warth R
    Pflugers Arch; 2015 May; 467(5):1027-42. PubMed ID: 25339223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of p11 expression facilitates acidity-sensing function of TASK1 channels in mouse adrenal medullary cells.
    Inoue M; Matsuoka H; Lesage F; Harada K
    FASEB J; 2019 Jan; 33(1):455-468. PubMed ID: 30001168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TASK channels: channelopathies, trafficking, and receptor-mediated inhibition.
    Inoue M; Matsuoka H; Harada K; Mugishima G; Kameyama M
    Pflugers Arch; 2020 Jul; 472(7):911-922. PubMed ID: 32472332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K⁺ 1 channels in adrenal medullary cells and PC12 cells.
    Matsuoka H; Harada K; Nakamura J; Inoue M
    Pflugers Arch; 2013 Jul; 465(7):1051-64. PubMed ID: 23377568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TASK1 and TASK3 potassium channels: determinants of aldosterone secretion and adrenocortical zonation.
    Bandulik S; Penton D; Barhanin J; Warth R
    Horm Metab Res; 2010 Jun; 42(6):450-7. PubMed ID: 20049674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DCPIB, an Inhibitor of Volume-Regulated Anion Channels, Distinctly Modulates K2P Channels.
    Lv J; Liang Y; Zhang S; Lan Q; Xu Z; Wu X; Kang L; Ren J; Cao Y; Wu T; Lin KL; Yung KKL; Cao X; Pang J; Zhou P
    ACS Chem Neurosci; 2019 Jun; 10(6):2786-2793. PubMed ID: 30935201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinase G dynamically modulates TASK1-mediated leak K+ currents in cholinergic neurons of the basal forebrain.
    Toyoda H; Saito M; Okazawa M; Hirao K; Sato H; Abe H; Takada K; Funabiki K; Takada M; Kaneko T; Kang Y
    J Neurosci; 2010 Apr; 30(16):5677-89. PubMed ID: 20410120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The M1P1 loop of TASK3 K2P channels apposes the selectivity filter and influences channel function.
    Clarke CE; Veale EL; Wyse K; Vandenberg JI; Mathie A
    J Biol Chem; 2008 Jun; 283(25):16985-92. PubMed ID: 18417474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons.
    González JA; Jensen LT; Doyle SE; Miranda-Anaya M; Menaker M; Fugger L; Bayliss DA; Burdakov D
    Eur J Neurosci; 2009 Jul; 30(1):57-64. PubMed ID: 19508695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of leak potassium channels in pain signaling.
    Li XY; Toyoda H
    Brain Res Bull; 2015 Oct; 119(Pt A):73-9. PubMed ID: 26321392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.