These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 30818170)

  • 21. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases.
    Talhaoui I; Matkarimov BT; Tchenio T; Zharkov DO; Saparbaev MK
    Free Radic Biol Med; 2017 Jun; 107():266-277. PubMed ID: 27890638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of endogenous oxidative DNA damage in carcinogenesis: what can we learn from repair-deficient mice?
    Epe B
    Biol Chem; 2002; 383(3-4):467-75. PubMed ID: 12033436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA modifications repaired by base excision repair are epigenetic.
    Moore SP; Toomire KJ; Strauss PR
    DNA Repair (Amst); 2013 Dec; 12(12):1152-8. PubMed ID: 24216087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MTE1 Functions with MPH1 in Double-Strand Break Repair.
    Yimit A; Kim T; Anand RP; Meister S; Ou J; Haber JE; Zhang Z; Brown GW
    Genetics; 2016 May; 203(1):147-57. PubMed ID: 26920759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An oxidized abasic lesion inhibits base excision repair leading to DNA strand breaks in a trinucleotide repeat tract.
    Beaver JM; Lai Y; Rolle SJ; Weng L; Greenberg MM; Liu Y
    PLoS One; 2018; 13(2):e0192148. PubMed ID: 29389977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(II) in mammalian cells.
    Dally H; Hartwig A
    Carcinogenesis; 1997 May; 18(5):1021-6. PubMed ID: 9163690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Baicalein (5,6,7-trihydroxyflavone) reduces oxidative stress-induced DNA damage by upregulating the DNA repair system.
    Kim KC; Lee IK; Kang KA; Kim HS; Kang SS; Hyun JW
    Cell Biol Toxicol; 2012 Dec; 28(6):421-33. PubMed ID: 23011636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The interacting pathways for prevention and repair of oxidative DNA damage.
    Slupphaug G; Kavli B; Krokan HE
    Mutat Res; 2003 Oct; 531(1-2):231-51. PubMed ID: 14637258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. XRCC1 and DNA strand break repair.
    Caldecott KW
    DNA Repair (Amst); 2003 Sep; 2(9):955-69. PubMed ID: 12967653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inactivation of a common OGG1 variant by TNF-alpha in mammalian cells.
    Morreall J; Limpose K; Sheppard C; Kow YW; Werner E; Doetsch PW
    DNA Repair (Amst); 2015 Feb; 26():15-22. PubMed ID: 25534136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative DNA double strand breaks and autophagy in the antitumor effect of sterically hindered platinum(II) complexes in NSCLCs.
    Chen F; Wang X; Jin X; Zhao J; Gou S
    Oncotarget; 2017 May; 8(19):30933-30955. PubMed ID: 28427237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A requirement for polymerized actin in DNA double-strand break repair.
    Andrin C; McDonald D; Attwood KM; Rodrigue A; Ghosh S; Mirzayans R; Masson JY; Dellaire G; Hendzel MJ
    Nucleus; 2012 Jul; 3(4):384-95. PubMed ID: 22688650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation-induced clustered DNA lesions: Repair and mutagenesis.
    Sage E; Shikazono N
    Free Radic Biol Med; 2017 Jun; 107():125-135. PubMed ID: 27939934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of repair endonucleases to characterize DNA damage induced by reactive oxygen species in cellular and cell-free systems.
    Epe B; Pflaum M; Häring M; Hegler J; Rüdiger H
    Toxicol Lett; 1993 Apr; 67(1-3):57-72. PubMed ID: 8383892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment.
    Scanlon SE; Glazer PM
    DNA Repair (Amst); 2015 Aug; 32():180-189. PubMed ID: 25956861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.
    Van Meter M; Simon M; Tombline G; May A; Morello TD; Hubbard BP; Bredbenner K; Park R; Sinclair DA; Bohr VA; Gorbunova V; Seluanov A
    Cell Rep; 2016 Sep; 16(10):2641-2650. PubMed ID: 27568560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histone modifications and DNA double-strand break repair.
    Moore JD; Krebs JE
    Biochem Cell Biol; 2004 Aug; 82(4):446-52. PubMed ID: 15284897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney.
    Ebrahimkhani MR; Daneshmand A; Mazumder A; Allocca M; Calvo JA; Abolhassani N; Jhun I; Muthupalani S; Ayata C; Samson LD
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):E4878-86. PubMed ID: 25349415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alkylation damage in DNA and RNA--repair mechanisms and medical significance.
    Drabløs F; Feyzi E; Aas PA; Vaagbø CB; Kavli B; Bratlie MS; Peña-Diaz J; Otterlei M; Slupphaug G; Krokan HE
    DNA Repair (Amst); 2004 Nov; 3(11):1389-407. PubMed ID: 15380096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Base excision repair of oxidative DNA damage and association with cancer and aging.
    Maynard S; Schurman SH; Harboe C; de Souza-Pinto NC; Bohr VA
    Carcinogenesis; 2009 Jan; 30(1):2-10. PubMed ID: 18978338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.