BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30818357)

  • 1. Learning the payoffs and costs of actions.
    Möller M; Bogacz R
    PLoS Comput Biol; 2019 Feb; 15(2):e1006285. PubMed ID: 30818357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.
    Morita K; Kawaguchi Y
    Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits.
    Morita K; Kato A
    Front Neural Circuits; 2014; 8():36. PubMed ID: 24782717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the effects of motivation on choice and learning in the basal ganglia.
    van Swieten MMH; Bogacz R
    PLoS Comput Biol; 2020 May; 16(5):e1007465. PubMed ID: 32453725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning Reward Uncertainty in the Basal Ganglia.
    Mikhael JG; Bogacz R
    PLoS Comput Biol; 2016 Sep; 12(9):e1005062. PubMed ID: 27589489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine.
    Morita K; Kawaguchi Y
    Front Neural Circuits; 2018; 12():111. PubMed ID: 30687019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopaminergic control of motivation and reinforcement learning: a closed-circuit account for reward-oriented behavior.
    Morita K; Morishima M; Sakai K; Kawaguchi Y
    J Neurosci; 2013 May; 33(20):8866-90. PubMed ID: 23678129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity.
    Berthet P; Lindahl M; Tully PJ; Hellgren-Kotaleski J; Lansner A
    Front Neural Circuits; 2016; 10():53. PubMed ID: 27493625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opponent and bidirectional control of movement velocity in the basal ganglia.
    Yttri EA; Dudman JT
    Nature; 2016 May; 533(7603):402-6. PubMed ID: 27135927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Neural Circuit Mechanism for the Involvements of Dopamine in Effort-Related Choices: Decay of Learned Values, Secondary Effects of Depletion, and Calculation of Temporal Difference Error.
    Morita K; Kato A
    eNeuro; 2018; 5(1):. PubMed ID: 29468191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The many worlds hypothesis of dopamine prediction error: implications of a parallel circuit architecture in the basal ganglia.
    Lau B; Monteiro T; Paton JJ
    Curr Opin Neurobiol; 2017 Oct; 46():241-247. PubMed ID: 28985550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation.
    Kato A; Morita K
    PLoS Comput Biol; 2016 Oct; 12(10):e1005145. PubMed ID: 27736881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal action-learning based on dopamine concentration.
    Morris G; Schmidt R; Bergman H
    Exp Brain Res; 2010 Jan; 200(3-4):307-17. PubMed ID: 19904530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement.
    Redgrave P; Vautrelle N; Reynolds JN
    Neuroscience; 2011 Dec; 198():138-51. PubMed ID: 21821101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of dopamine as a vector-valued feedback signal in the basal ganglia.
    Wärnberg E; Kumar A
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2221994120. PubMed ID: 37527344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigating complex decision spaces: Problems and paradigms in sequential choice.
    Walsh MM; Anderson JR
    Psychol Bull; 2014 Mar; 140(2):466-86. PubMed ID: 23834192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical model of salience gated working memory, action selection and reinforcement based on basal ganglia and dopamine feedback.
    Ponzi A
    Neural Netw; 2008; 21(2-3):322-30. PubMed ID: 18280108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes.
    Cox SM; Frank MJ; Larcher K; Fellows LK; Clark CA; Leyton M; Dagher A
    Neuroimage; 2015 Apr; 109():95-101. PubMed ID: 25562824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.