These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30818805)

  • 1. Connector-Free World-to-Chip Interconnection for Microfluidic Devices.
    Song IH; Park T
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30818805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Socket with built-in valves for the interconnection of microfluidic chips to macro constituents.
    Yang Z; Maeda R
    J Chromatogr A; 2003 Sep; 1013(1-2):29-33. PubMed ID: 14604105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.
    Chen A; Pan T
    Lab Chip; 2011 Feb; 11(4):727-32. PubMed ID: 21109877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chip-to-world connector with a built-in reservoir for simple small-volume sample injection.
    van Swaay D; Mächler JP; Stanley C; deMello A
    Lab Chip; 2014 Jan; 14(1):178-81. PubMed ID: 24226110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed high density, reversible, chip-to-chip microfluidic interconnects.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2018 Feb; 18(4):639-647. PubMed ID: 29355276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A disposable emulsion droplet generation lab chips driven by vacuum module for manipulation of blood cells.
    Chia-Hung Lee ; Chien-Chong Hong
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8010-3. PubMed ID: 26738151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics.
    Foudeh AM; Fatanat Didar T; Veres T; Tabrizian M
    Lab Chip; 2012 Sep; 12(18):3249-66. PubMed ID: 22859057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing of detection resolution via designing of a multi-functional 3D connector between sampling and detection zones in distance-based microfluidic paper-based analytical device: multi-channel design for multiplex analysis.
    Al-Jaf SH; Omer KM
    Mikrochim Acta; 2022 Nov; 189(12):482. PubMed ID: 36447014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interconnected reversible lab-on-a-chip technology.
    Igata E; Arundell M; Morgan H; Cooper JM
    Lab Chip; 2002 May; 2(2):65-9. PubMed ID: 15100836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface.
    Wilhelm E; Neumann C; Duttenhofer T; Pires L; Rapp BE
    Lab Chip; 2013 Nov; 13(22):4343-51. PubMed ID: 24056989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rapid, reliable, and automatable lab-on-a-chip interface.
    Kortmann H; Blank LM; Schmid A
    Lab Chip; 2009 May; 9(10):1455-60. PubMed ID: 19417914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil.
    Ueland M; Blanes L; Taudte RV; Stuart BH; Cole N; Willis P; Roux C; Doble P
    J Chromatogr A; 2016 Mar; 1436():28-33. PubMed ID: 26850317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives.
    Ghasemi A; Amiri H; Zare H; Masroor M; Hasanzadeh A; Beyzavi A; Aref AR; Karimi M; Hamblin MR
    Microfluid Nanofluidics; 2017 Sep; 21(9):. PubMed ID: 30881265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration and detection of biochemical assays in digital microfluidic LOC devices.
    Malic L; Brassard D; Veres T; Tabrizian M
    Lab Chip; 2010 Feb; 10(4):418-31. PubMed ID: 20126681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development, Modeling, Fabrication, and Characterization of a Magnetic, Micro-Spring-Suspended System for the Safe Electrical Interconnection of Neural Implants.
    Hoch K; Pothof F; Becker F; Paul O; Ruther P
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.