These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30820469)

  • 1. Solid immersion microscopy images cells under cryogenic conditions with 12 nm resolution.
    Wang L; Bateman B; Zanetti-Domingues LC; Moores AN; Astbury S; Spindloe C; Darrow MC; Romano M; Needham SR; Beis K; Rolfe DJ; Clarke DT; Martin-Fernandez ML
    Commun Biol; 2019; 2():74. PubMed ID: 30820469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-resolution Microscopy at Cryogenic Temperatures Using Solid Immersion Lenses.
    Bateman BC; Zanetti-Domingues LC; Moores AN; Needham SR; Rolfe DJ; Wang L; Clarke DT; Martin-Fernandez ML
    Bio Protoc; 2019 Nov; 9(22):e3426. PubMed ID: 33654923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions.
    Nahmani M; Lanahan C; DeRosier D; Turrigiano GG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3832-3836. PubMed ID: 28348224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward quantitative super-resolution methods for cryo-CLEM.
    Zanetti-Domingues LC; Hirsch M; Wang L; Eastwood TA; Baker K; Mulvihill DP; Radford S; Horne J; White P; Bateman B
    Methods Cell Biol; 2024; 187():249-292. PubMed ID: 38705627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of PAmKate as a Red Photoactivatable Fluorescent Protein for Cryogenic Super-Resolution Imaging.
    Dahlberg PD; Sartor AM; Wang J; Saurabh S; Shapiro L; Moerner WE
    J Am Chem Soc; 2018 Oct; 140(39):12310-12313. PubMed ID: 30222332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberration-corrected cryoimmersion light microscopy.
    Faoro R; Bassu M; Mejia YX; Stephan T; Dudani N; Boeker C; Jakobs S; Burg TP
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1204-1209. PubMed ID: 29358380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-vacuum optical platform for cryo-CLEM (HOPE): A new solution for non-integrated multiscale correlative light and electron microscopy.
    Li S; Ji G; Shi Y; Klausen LH; Niu T; Wang S; Huang X; Ding W; Zhang X; Dong M; Xu W; Sun F
    J Struct Biol; 2018 Jan; 201(1):63-75. PubMed ID: 29113848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waveguide-based total internal reflection fluorescence microscope enabling cellular imaging under cryogenic conditions.
    Li Q; Hulleman CN; Moerland RJ; Mailvaganam E; Ganapathy S; Brinks D; Stallinga S; Rieger B
    Opt Express; 2021 Oct; 29(21):34097-34108. PubMed ID: 34809207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular imaging using total internal reflection fluorescence microscopy: theory and instrumentation.
    Toomre D
    Cold Spring Harb Protoc; 2012 Apr; 2012(4):414-24. PubMed ID: 22474668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence microscopy investigations of ligand propagation and accessibility under adherent cells.
    Swift JL; Sergeev M; Wiseman PW
    Biointerphases; 2010 Dec; 5(4):139-48. PubMed ID: 21219035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bacterial divisome: more than a ring?
    Söderström B; Daley DO
    Curr Genet; 2017 May; 63(2):161-164. PubMed ID: 27387519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Labeling proteins inside living cells using external fluorophores for microscopy.
    Teng KW; Ishitsuka Y; Ren P; Youn Y; Deng X; Ge P; Lee SH; Belmont AS; Selvin PR
    Elife; 2016 Dec; 5():. PubMed ID: 27935478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory-based cryogenic soft x-ray tomography with correlative cryo-light and electron microscopy.
    Carlson DB; Gelb J; Palshin V; Evans JE
    Microsc Microanal; 2013 Feb; 19(1):22-9. PubMed ID: 23332214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live cell PNA labelling enables erasable fluorescence imaging of membrane proteins.
    Gavins GC; Gröger K; Bartoschek MD; Wolf P; Beck-Sickinger AG; Bultmann S; Seitz O
    Nat Chem; 2021 Jan; 13(1):15-23. PubMed ID: 33288896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ferritin-based label for cellular electron cryotomography.
    Wang Q; Mercogliano CP; Löwe J
    Structure; 2011 Feb; 19(2):147-54. PubMed ID: 21300284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Atom Fluorescence Switch: A General Approach toward Visible-Light-Activated Dyes for Biological Imaging.
    Tang J; Robichaux MA; Wu KL; Pei J; Nguyen NT; Zhou Y; Wensel TG; Xiao H
    J Am Chem Soc; 2019 Sep; 141(37):14699-14706. PubMed ID: 31450884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging.
    Li Q; Wu SS; Chou KC
    Biophys J; 2009 Dec; 97(12):3224-8. PubMed ID: 20006960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical review: types of imaging-direct STORM.
    Jensen E; Crossman DJ
    Anat Rec (Hoboken); 2014 Dec; 297(12):2227-31. PubMed ID: 24995970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative fluorescence microscopy techniques.
    Esposito A; Schlachter S; Schierle GS; Elder AD; Diaspro A; Wouters FS; Kaminski CF; Iliev AI
    Methods Mol Biol; 2009; 586():117-42. PubMed ID: 19768427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct stochastic optical reconstruction microscopy (dSTORM).
    Endesfelder U; Heilemann M
    Methods Mol Biol; 2015; 1251():263-76. PubMed ID: 25391804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.