These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 30820665)

  • 1. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain.
    Huang S; Liu T; Peng B; Geng A
    Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose.
    Sedlak M; Ho NW
    Appl Biochem Biotechnol; 2004; 113-116():403-16. PubMed ID: 15054267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering.
    Demeke MM; Dietz H; Li Y; Foulquié-Moreno MR; Mutturi S; Deprez S; Den Abt T; Bonini BM; Liden G; Dumortier F; Verplaetse A; Boles E; Thevelein JM
    Biotechnol Biofuels; 2013 Jun; 6(1):89. PubMed ID: 23800147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
    Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol.
    Ho NW; Chen Z; Brainard AP; Sedlak M
    Adv Biochem Eng Biotechnol; 1999; 65():163-92. PubMed ID: 10533435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system.
    Karagöz P; Özkan M
    Bioresour Technol; 2014 Apr; 158():286-93. PubMed ID: 24614063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E; Sedlak M; Ho NW; Mosier NS
    FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400.
    Erdei B; Frankó B; Galbe M; Zacchi G
    J Biotechnol; 2013 Mar; 164(1):50-8. PubMed ID: 23262129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis.
    Nigam JN
    J Biotechnol; 2001 Apr; 87(1):17-27. PubMed ID: 11267696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing xylose-fermentation capacity of engineered Saccharomyces cerevisiae by multistep evolutionary engineering in inhibitor-rich lignocellulose hydrolysate.
    Demeke MM; Echemendia D; Belo E; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38604750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.
    Romaní A; Pereira F; Johansson B; Domingues L
    Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass.
    Sato TK; Liu T; Parreiras LS; Williams DL; Wohlbach DJ; Bice BD; Ong IM; Breuer RJ; Qin L; Busalacchi D; Deshpande S; Daum C; Gasch AP; Hodge DB
    Appl Environ Microbiol; 2014 Jan; 80(2):540-54. PubMed ID: 24212571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol production from corn cob hydrolysates by Escherichia coli KO11.
    de Carvalho Lima KG; Takahashi CM; Alterthum F
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):124-8. PubMed ID: 12242633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains.
    Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U
    Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
    Madhavan A; Srivastava A; Kondo A; Bisaria VS
    Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol production by Saccharomyces cerevisiae using lignocellulosic hydrolysate from Chrysanthemum waste degradation.
    Quevedo-Hidalgo B; Monsalve-Marín F; Narváez-Rincón PC; Pedroza-Rodríguez AM; Velásquez-Lozano ME
    World J Microbiol Biotechnol; 2013 Mar; 29(3):459-66. PubMed ID: 23117675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.