These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 30820665)

  • 21. Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts.
    Zhang Y; Wang C; Wang L; Yang R; Hou P; Liu J
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):453-464. PubMed ID: 28101807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions.
    Costa CE; Romaní A; Cunha JT; Johansson B; Domingues L
    Bioresour Technol; 2017 Mar; 227():24-34. PubMed ID: 28013133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates.
    Tomás-Pejó E; Olsson L
    Microb Biotechnol; 2015 Nov; 8(6):999-1005. PubMed ID: 25989314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates.
    Zhu L; Li P; Sun T; Kong M; Li X; Ali S; Liu W; Fan S; Qiao J; Li S; Peng L; He B; Jin M; Xiao W; Cao L
    Bioresour Technol; 2020 Oct; 313():123724. PubMed ID: 32586644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase.
    Smith J; van Rensburg E; Görgens JF
    BMC Biotechnol; 2014 May; 14():41. PubMed ID: 24884721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.
    Ko JK; Um Y; Lee SM
    Bioresour Technol; 2016 Dec; 222():422-430. PubMed ID: 27744166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production.
    Zhu JQ; Li X; Qin L; Li WC; Li HZ; Li BZ; Yuan YJ
    Bioresour Technol; 2016 Oct; 218():380-7. PubMed ID: 27387414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: I. Influence of the ratio of glucose/xylose on ethanol production.
    Matsushika A; Sawayama S
    Appl Biochem Biotechnol; 2013 Feb; 169(3):712-21. PubMed ID: 23271622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of ethanol production from microfluidized wheat straw by response surface methodology.
    Turhan O; Isci A; Mert B; Sakiyan O; Donmez S
    Prep Biochem Biotechnol; 2015; 45(8):785-95. PubMed ID: 25181638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol.
    Park H; Jeong D; Shin M; Kwak S; Oh EJ; Ko JK; Kim SR
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3245-3252. PubMed ID: 32076775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.
    Ehsanipour M; Suko AV; Bura R
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes.
    Tomás-Pejó E; Ballesteros M; Oliva JM; Olsson L
    J Ind Microbiol Biotechnol; 2010 Nov; 37(11):1211-20. PubMed ID: 20585830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae.
    Olsson L; Soerensen HR; Dam BP; Christensen H; Krogh KM; Meyer AS
    Appl Biochem Biotechnol; 2006; 129-132():117-29. PubMed ID: 16915635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate.
    Lawford HG; Rousseau JD; Tolan JS
    Appl Biochem Biotechnol; 2001; 91-93():133-46. PubMed ID: 11963842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production.
    Demeke MM; Dumortier F; Li Y; Broeckx T; Foulquié-Moreno MR; Thevelein JM
    Biotechnol Biofuels; 2013 Aug; 6(1):120. PubMed ID: 23971950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.
    Martín C; Marcet M; Almazán O; Jönsson LJ
    Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction.
    Brandenburg J; Poppele I; Blomqvist J; Puke M; Pickova J; Sandgren M; Rapoport A; Vedernikovs N; Passoth V
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):6269-6277. PubMed ID: 29804136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.