BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30821044)

  • 1. Predictive models in ecotoxicology: Bridging the gap between scientific progress and regulatory applicability-Remarks and research needs.
    Vighi M; Barsi A; Focks A; Grisoni F
    Integr Environ Assess Manag; 2019 May; 15(3):345-351. PubMed ID: 30821044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive Models in Ecotoxicology: Bridging the Gap Between Scientific Progress and Regulatory Applicability.
    Focks A; Grisoni F; Barsi A; Vighi M
    Integr Environ Assess Manag; 2018 Sep; 14(5):601-603. PubMed ID: 29457682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicokinetic-Toxicodynamic Modeling of the Effects of Pesticides on Growth of
    Martin T; Thompson H; Thorbek P; Ashauer R
    Chem Res Toxicol; 2019 Nov; 32(11):2281-2294. PubMed ID: 31674768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to Evaluate the Quality of Toxicokinetic-Toxicodynamic Models in the Context of Environmental Risk Assessment.
    Jager T; Ashauer R
    Integr Environ Assess Manag; 2018 Sep; 14(5):604-614. PubMed ID: 29573552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using toxicokinetic-toxicodynamic modeling as an acute risk assessment refinement approach in vertebrate ecological risk assessment.
    Ducrot V; Ashauer R; Bednarska AJ; Hinarejos S; Thorbek P; Weyman G
    Integr Environ Assess Manag; 2016 Jan; 12(1):32-45. PubMed ID: 25833822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae.
    Gao Y; Feng J; Han F; Zhu L
    Environ Pollut; 2016 Jun; 213():16-29. PubMed ID: 26874871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Best Practices for QSAR Model Reporting: Physical and Chemical Properties, Ecotoxicity, Environmental Fate, Human Health, and Toxicokinetics Endpoints.
    Piir G; Kahn I; García-Sosa AT; Sild S; Ahte P; Maran U
    Environ Health Perspect; 2018 Dec; 126(12):126001. PubMed ID: 30561225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicokinetic models and related tools in environmental risk assessment of chemicals.
    Grech A; Brochot C; Dorne JL; Quignot N; Bois FY; Beaudouin R
    Sci Total Environ; 2017 Feb; 578():1-15. PubMed ID: 27842969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals.
    Escher BI; Ashauer R; Dyer S; Hermens JL; Lee JH; Leslie HA; Mayer P; Meador JP; Warne MS
    Integr Environ Assess Manag; 2011 Jan; 7(1):28-49. PubMed ID: 21184568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural alerts for the identification of bioaccumulative compounds.
    Valsecchi C; Grisoni F; Consonni V; Ballabio D
    Integr Environ Assess Manag; 2019 Jan; 15(1):19-28. PubMed ID: 30024088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Likelihood-Based Approach for Automated Optimization and Uncertainty Analysis of Toxicokinetic-Toxicodynamic Models.
    Jager T
    Integr Environ Assess Manag; 2021 Mar; 17(2):388-397. PubMed ID: 32860485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building and Applying Quantitative Adverse Outcome Pathway Models for Chemical Hazard and Risk Assessment.
    Perkins EJ; Ashauer R; Burgoon L; Conolly R; Landesmann B; Mackay C; Murphy CA; Pollesch N; Wheeler JR; Zupanic A; Scholz S
    Environ Toxicol Chem; 2019 Sep; 38(9):1850-1865. PubMed ID: 31127958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly time-variable exposure to chemicals--toward an assessment strategy.
    Ashauer R; Brown CD
    Integr Environ Assess Manag; 2013 Jul; 9(3):e27-33. PubMed ID: 23564608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General unified threshold model of survival--a toxicokinetic-toxicodynamic framework for ecotoxicology.
    Jager T; Albert C; Preuss TG; Ashauer R
    Environ Sci Technol; 2011 Apr; 45(7):2529-40. PubMed ID: 21366215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How TK-TD and population models for aquatic macrophytes could support the risk assessment for plant protection products.
    Hommen U; Schmitt W; Heine S; Brock TC; Duquesne S; Manson P; Meregalli G; Ochoa-Acuña H; van Vliet P; Arts G
    Integr Environ Assess Manag; 2016 Jan; 12(1):82-95. PubMed ID: 26420056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect propagation in a toxicokinetic/toxicodynamic model explains delayed effects on the growth of unicellular green algae Scenedesmus vacuolatus.
    Vogs C; Bandow N; Altenburger R
    Environ Toxicol Chem; 2013 Apr; 32(5):1161-72. PubMed ID: 23359135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Considerations for using reproduction data in toxicokinetic-toxicodynamic modeling.
    Jager T; Trijau M; Sherborne N; Goussen B; Ashauer R
    Integr Environ Assess Manag; 2022 Mar; 18(2):479-487. PubMed ID: 34110085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advantages of toxicokinetic and toxicodynamic modelling in aquatic ecotoxicology and risk assessment.
    Ashauer R; Escher BI
    J Environ Monit; 2010 Nov; 12(11):2056-61. PubMed ID: 20862435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological modes of action across species and toxicants: the key to predictive ecotoxicology.
    Ashauer R; Jager T
    Environ Sci Process Impacts; 2018 Jan; 20(1):48-57. PubMed ID: 29090718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicokinetic and toxicodynamic (TK-TD) modeling to study oxidative stress-dependent toxicity of heavy metals in zebrafish.
    Gao Y; Kang L; Zhang Y; Feng J; Zhu L
    Chemosphere; 2019 Apr; 220():774-782. PubMed ID: 30611076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.