BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30821082)

  • 1. Supramolecularly Bonded Layered Heterostructures Exhibiting HER Activity.
    Kaur M; Singh NK; Gupta U; Sarkar A; George SJ; Rao CNR
    Chem Asian J; 2019 May; 14(9):1523-1529. PubMed ID: 30821082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Printable Transfer-Free and Wafer-Size MoS
    Liu Q; Cook B; Gong M; Gong Y; Ewing D; Casper M; Stramel A; Wu J
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12728-12733. PubMed ID: 28322041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets.
    Lv R; Robinson JA; Schaak RE; Sun D; Sun Y; Mallouk TE; Terrones M
    Acc Chem Res; 2015 Jan; 48(1):56-64. PubMed ID: 25490673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent cross-linking as a strategy to generate novel materials based on layered (2D) and other low D structures.
    Rao CNR; Pramoda K; Kumar R
    Chem Commun (Camb); 2017 Sep; 53(73):10093-10107. PubMed ID: 28795703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS
    Iqbal S; Pan Z; Zhou K
    Nanoscale; 2017 May; 9(20):6638-6642. PubMed ID: 28497825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the Interfacial Interactions of van der Waals 1T-MoS
    Puente Santiago AR; He T; Eraso O; Ahsan MA; Nair AN; Chava VSN; Zheng T; Pilla S; Fernandez-Delgado O; Du A; Sreenivasan ST; Echegoyen L
    J Am Chem Soc; 2020 Oct; 142(42):17923-17927. PubMed ID: 33030340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Nanosheets of Natural van der Waals Heterostructures.
    Banik A; Biswas K
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14561-14566. PubMed ID: 28892264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures.
    Wang H; Bang J; Sun Y; Liang L; West D; Meunier V; Zhang S
    Nat Commun; 2016 May; 7():11504. PubMed ID: 27160484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.
    Samad L; Bladow SM; Ding Q; Zhuo J; Jacobberger RM; Arnold MS; Jin S
    ACS Nano; 2016 Jul; 10(7):7039-46. PubMed ID: 27373305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum.
    Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S
    ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocomposites of C
    Pramoda K; Gupta U; Chhetri M; Bandyopadhyay A; Pati SK; Rao CN
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10664-10672. PubMed ID: 28267317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene.
    Ago H; Endo H; Solís-Fernández P; Takizawa R; Ohta Y; Fujita Y; Yamamoto K; Tsuji M
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5265-73. PubMed ID: 25695865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MoS
    Sun Y; Zhong W; Wang Y; Xu X; Wang T; Wu L; Du Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34243-34255. PubMed ID: 28901126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Electrical and Optoelectronic Characteristics of Few-Layer Type-II SnSe/MoS
    Yang S; Wu M; Wang B; Zhao LD; Huang L; Jiang C; Wei SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42149-42155. PubMed ID: 29134796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the Collaborative Effect at the Cucurbit[8]uril-MoS
    Martínez-Moro R; Del Pozo M; Mendieta-Moreno JI; Collado A; Canola S; Vázquez L; Petit-Domínguez MD; Casero E; Quintana C; Martín-Gago JA
    Chemistry; 2023 Feb; 29(9):e202203244. PubMed ID: 36534440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of 2D Molybdenum Phosphide via Surface-Confined Atomic Substitution.
    Wang W; Qi J; Zhai L; Ma C; Ke C; Zhai W; Wu Z; Bao K; Yao Y; Li S; Chen B; Repaka DVM; Zhang X; Ye R; Lai Z; Luo G; Chen Y; He Q
    Adv Mater; 2022 Sep; 34(35):e2203220. PubMed ID: 35902244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides.
    Azizi A; Eichfeld S; Geschwind G; Zhang K; Jiang B; Mukherjee D; Hossain L; Piasecki AF; Kabius B; Robinson JA; Alem N
    ACS Nano; 2015 May; 9(5):4882-90. PubMed ID: 25885122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalently Linked Heterostructures of Phosphorene with MoS
    Vishnoi P; Pramoda K; Gupta U; Chhetri M; Balakrishna RG; Rao CNR
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27780-27787. PubMed ID: 31266296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of the Properties of 2D Nanocomposites Generated by Covalent Crosslinking of Nanosheets on the Interlayer Separation: A Combined Experimental and Theoretical Study.
    Singh R; Gupta U; Kumar VS; Ayyub MM; Waghmare UV; Rao CNR
    Chemphyschem; 2019 Jul; 20(13):1728-1737. PubMed ID: 31066189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties.
    Le NB; Huan TD; Woods LM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6286-92. PubMed ID: 26885874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.