These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 30821199)
1. Deep learning for predicting toxicity of chemicals: a mini review. Tang W; Chen J; Wang Z; Xie H; Hong H J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):252-271. PubMed ID: 30821199 [TBL] [Abstract][Full Text] [Related]
2. Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity. Liu R; Madore M; Glover KP; Feasel MG; Wallqvist A Toxicol Sci; 2018 Aug; 164(2):512-526. PubMed ID: 29722883 [TBL] [Abstract][Full Text] [Related]
3. Deep learning driven QSAR model for environmental toxicology: Effects of endocrine disrupting chemicals on human health. Heo S; Safder U; Yoo C Environ Pollut; 2019 Oct; 253():29-38. PubMed ID: 31302400 [TBL] [Abstract][Full Text] [Related]
4. A review on machine learning methods for in silico toxicity prediction. Idakwo G; Luttrell J; Chen M; Hong H; Zhou Z; Gong P; Zhang C J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):169-191. PubMed ID: 30628866 [TBL] [Abstract][Full Text] [Related]
5. Machine learning models for predicting endocrine disruption potential of environmental chemicals. Chierici M; Giulini M; Bussola N; Jurman G; Furlanello C J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):237-251. PubMed ID: 30628533 [TBL] [Abstract][Full Text] [Related]
6. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure. Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096 [TBL] [Abstract][Full Text] [Related]
7. Could deep learning in neural networks improve the QSAR models? Gini G; Zanoli F; Gamba A; Raitano G; Benfenati E SAR QSAR Environ Res; 2019 Sep; 30(9):617-642. PubMed ID: 31460798 [TBL] [Abstract][Full Text] [Related]
8. Demystifying Multitask Deep Neural Networks for Quantitative Structure-Activity Relationships. Xu Y; Ma J; Liaw A; Sheridan RP; Svetnik V J Chem Inf Model; 2017 Oct; 57(10):2490-2504. PubMed ID: 28872869 [TBL] [Abstract][Full Text] [Related]
9. Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology. Li Y; Idakwo G; Thangapandian S; Chen M; Hong H; Zhang C; Gong P J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):219-236. PubMed ID: 30426823 [TBL] [Abstract][Full Text] [Related]
10. In Silico Study of In Vitro GPCR Assays by QSAR Modeling. Mansouri K; Judson RS Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474 [TBL] [Abstract][Full Text] [Related]
11. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors. Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657 [TBL] [Abstract][Full Text] [Related]
12. Leveraging high-throughput screening data, deep neural networks, and conditional generative adversarial networks to advance predictive toxicology. Green AJ; Mohlenkamp MJ; Das J; Chaudhari M; Truong L; Tanguay RL; Reif DM PLoS Comput Biol; 2021 Jul; 17(7):e1009135. PubMed ID: 34214078 [TBL] [Abstract][Full Text] [Related]
13. Review of machine learning and deep learning models for toxicity prediction. Guo W; Liu J; Dong F; Song M; Li Z; Khan MKH; Patterson TA; Hong H Exp Biol Med (Maywood); 2023 Nov; 248(21):1952-1973. PubMed ID: 38057999 [TBL] [Abstract][Full Text] [Related]
14. Machine Learning and Artificial Intelligence in Toxicological Sciences. Lin Z; Chou WC Toxicol Sci; 2022 Aug; 189(1):7-19. PubMed ID: 35861448 [TBL] [Abstract][Full Text] [Related]
15. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications. Pastur-Romay LA; CedrĂ³n F; Pazos A; Porto-Pazos AB Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27529225 [TBL] [Abstract][Full Text] [Related]
16. Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library. Matsuzaka Y; Uesawa Y Molecules; 2020 Jun; 25(12):. PubMed ID: 32549344 [TBL] [Abstract][Full Text] [Related]
18. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046 [TBL] [Abstract][Full Text] [Related]
19. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. Kavlock R; Dix D J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897 [TBL] [Abstract][Full Text] [Related]
20. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform. Hur J; Danes L; Hsieh JH; McGregor B; Krout D; Auerbach S Mol Inform; 2018 May; 37(5):e1700129. PubMed ID: 29377626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]