BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30821313)

  • 21. Circulating Tumor Cells: Markers and Methodologies for Enrichment and Detection.
    Alvarez Cubero MJ; Lorente JA; Robles-Fernandez I; Rodriguez-Martinez A; Puche JL; Serrano MJ
    Methods Mol Biol; 2017; 1634():283-303. PubMed ID: 28819860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optomicrofluidic detection of cancer cells in peripheral blood
    Mirkale K; Jain SK; Oviya TS; Mahalingam S
    Lab Chip; 2023 Dec; 23(24):5151-5164. PubMed ID: 37955355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved detection by ensemble-decision aliquot ranking of circulating tumor cells with low numbers of a targeted surface antigen.
    Johnson ES; Anand RK; Chiu DT
    Anal Chem; 2015 Sep; 87(18):9389-95. PubMed ID: 26302174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'.
    Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F
    Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter.
    Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC
    Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Label-Free Separation of Circulating Tumor Cells and Clusters by Alternating Frequency Acoustic Field in a Microfluidic Chip.
    Zhang Y; Zhang Z; Zheng D; Huang T; Fu Q; Liu Y
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation.
    Khan M; Chen X
    Electrophoresis; 2022 Apr; 43(7-8):879-891. PubMed ID: 35015306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Isolation Methods for Circulating Tumor Cells (CTCs).
    Kallergi G; Politaki E; Alkahtani S; Stournaras C; Georgoulias V
    Cell Physiol Biochem; 2016; 40(3-4):411-419. PubMed ID: 27889762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.
    Hyun KA; Kwon K; Han H; Kim SI; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.
    Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X
    Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells.
    Warkiani ME; Khoo BL; Tan DS; Bhagat AA; Lim WT; Yap YS; Lee SC; Soo RA; Han J; Lim CT
    Analyst; 2014 Jul; 139(13):3245-55. PubMed ID: 24840240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer.
    Hyun KA; Koo GB; Han H; Sohn J; Choi W; Kim SI; Jung HI; Kim YS
    Oncotarget; 2016 Apr; 7(17):24677-87. PubMed ID: 27013581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated Microfluidic Filtration and Immunocytochemistry Detection System for Capture and Enumeration of Circulating Tumor Cells and Other Rare Cell Populations in Blood.
    Pugia M; Magbanua MJM; Park JW
    Methods Mol Biol; 2017; 1634():119-131. PubMed ID: 28819845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis.
    Augustsson P; Magnusson C; Nordin M; Lilja H; Laurell T
    Anal Chem; 2012 Sep; 84(18):7954-62. PubMed ID: 22897670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inertial lift enhanced phase partitioning for continuous microfluidic surface energy based sorting of particles.
    Parichehreh V; Sethu P
    Lab Chip; 2012 Apr; 12(7):1296-301. PubMed ID: 22336961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An ultra-compact acoustofluidic device based on the narrow-path travelling surface acoustic wave (np-TSAW) for label-free isolation of living circulating tumor cells.
    Geng W; Liu Y; Yu N; Qiao X; Ji M; Niu Y; Niu L; Fu W; Zhang H; Bi K; Chou X
    Anal Chim Acta; 2023 May; 1255():341138. PubMed ID: 37032055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic inertia enhanced phase partitioning for enriching nucleated cell populations in blood.
    Parichehreh V; Medepallai K; Babbarwal K; Sethu P
    Lab Chip; 2013 Mar; 13(5):892-900. PubMed ID: 23307172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circulating Tumor Cell Cluster Sorting by Size and Asymmetry.
    Au SH
    Methods Mol Biol; 2023; 2679():15-23. PubMed ID: 37300606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous and selective isolation of multiple subpopulations of rare cells from peripheral blood using ensemble-decision aliquot ranking (eDAR).
    Zhao M; Wei B; Nelson WC; Schiro PG; Chiu DT
    Lab Chip; 2015 Aug; 15(16):3391-6. PubMed ID: 26160592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.