These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30821458)

  • 1. Free Energies of Catalytic Species Adsorbed to Pt(111) Surfaces under Liquid Solvent Calculated Using Classical and Quantum Approaches.
    Zhang X; DeFever RS; Sarupria S; Getman RB
    J Chem Inf Model; 2019 May; 59(5):2190-2198. PubMed ID: 30821458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-Phase Effects on Adsorption Processes in Heterogeneous Catalysis.
    Zare M; Saleheen MS; Singh N; Uline MJ; Faheem M; Heyden A
    JACS Au; 2022 Sep; 2(9):2119-2134. PubMed ID: 36186571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvation Free Energies and Adsorption Energies at the Metal/Water Interface from Hybrid Quantum-Mechanical/Molecular Mechanics Simulations.
    Clabaut P; Schweitzer B; Götz AW; Michel C; Steinmann SN
    J Chem Theory Comput; 2020 Oct; 16(10):6539-6549. PubMed ID: 32931268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of an electrified interface on the entropy and energy of solvation of methanol oxidation intermediates on platinum(111) under explicit solvation.
    Estejab A; García Cárcamo RA; Getman RB
    Phys Chem Chem Phys; 2022 Feb; 24(7):4251-4261. PubMed ID: 35107094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating Solvent Effects at the Aqueous/Pt(111) Interface.
    Iyemperumal SK; Deskins NA
    Chemphyschem; 2017 Aug; 18(16):2171-2190. PubMed ID: 28464413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in solvation thermodynamics of oxygenates at Pt/Al
    Garcia Carcamo RA; Zhang X; Estejab A; Zhou J; Hare BJ; Sievers C; Sarupria S; Getman RB
    iScience; 2023 Feb; 26(2):105980. PubMed ID: 36756373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models.
    Steinmann SN; Sautet P; Michel C
    Phys Chem Chem Phys; 2016 Nov; 18(46):31850-31861. PubMed ID: 27841404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into how the aqueous environment influences the kinetics and mechanisms of heterogeneously-catalyzed COH* and CH
    Bodenschatz CJ; Xie T; Zhang X; Getman RB
    Phys Chem Chem Phys; 2019 May; 21(19):9895-9904. PubMed ID: 31038522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a methodology to compute solvation free energies on the basis of the theory of energy representation for solutions represented with a polarizable force field.
    Suzuoka D; Takahashi H; Ishiyama T; Morita A
    J Chem Phys; 2012 Dec; 137(21):214503. PubMed ID: 23231247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implicit versus explicit solvent in free energy calculations of enzyme catalysis: Methyl transfer catalyzed by catechol O-methyltransferase.
    Rod TH; Rydberg P; Ryde U
    J Chem Phys; 2006 May; 124(17):174503. PubMed ID: 16689579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvation Thermodynamics of Solutes in Water and Ionic Liquids Using the Multiscale Solvation-Layer Interface Condition Continuum Model.
    Rahimi AM; Jamali S; Bardhan JP; Lustig SR
    J Chem Theory Comput; 2022 Sep; 18(9):5539-5558. PubMed ID: 36001344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem A; 2006 Feb; 110(7):2493-9. PubMed ID: 16480309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energies of solvation in the context of protein folding: Implications for implicit and explicit solvent models.
    Cumberworth A; Bui JM; Gsponer J
    J Comput Chem; 2016 Mar; 37(7):629-40. PubMed ID: 26558440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Van der Waals Interactions on the Solvation Energies of Adsorbates at Pt-Based Electrocatalysts.
    Granda-Marulanda LP; Builes S; Koper MTM; Calle-Vallejo F
    Chemphyschem; 2019 Nov; 20(22):2968-2972. PubMed ID: 31348598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the accuracy and performance of implicit solvent models for drug molecules: conformational ensemble approaches.
    Kolář M; Fanfrlík J; Lepšík M; Forti F; Luque FJ; Hobza P
    J Phys Chem B; 2013 May; 117(19):5950-62. PubMed ID: 23600402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implicit nonpolar solvent models.
    Tan C; Tan YH; Luo R
    J Phys Chem B; 2007 Oct; 111(42):12263-74. PubMed ID: 17918880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanical continuum solvation models for ionic liquids.
    Bernales VS; Marenich AV; Contreras R; Cramer CJ; Truhlar DG
    J Phys Chem B; 2012 Aug; 116(30):9122-9. PubMed ID: 22734466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydration free energies of amino acids: why side chain analog data are not enough.
    König G; Boresch S
    J Phys Chem B; 2009 Jul; 113(26):8967-74. PubMed ID: 19507836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.