These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30821470)

  • 1. Effect of Low-Concentration of 1-Pentanol on the Wettability of Petroleum Fluid-Brine-Rock Systems.
    Lu Y; Najafabadi NF; Firoozabadi A
    Langmuir; 2019 Mar; 35(12):4263-4269. PubMed ID: 30821470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability of rock/CO
    Arif M; Abu-Khamsin SA; Iglauer S
    Adv Colloid Interface Sci; 2019 Jun; 268():91-113. PubMed ID: 30999164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wettability Alteration of Carbonate Reservoirs Using Imidazolium-Based Ionic Liquids.
    Sakthivel S
    ACS Omega; 2021 Nov; 6(45):30315-30326. PubMed ID: 34805663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and Pressure Conditions.
    Xie Y; Khishvand M; Piri M
    Langmuir; 2020 Jun; 36(22):6079-6088. PubMed ID: 32388994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Fluid-Rock Interactions on In Situ Bacterial Alteration of Interfacial Properties and Wettability of CO
    Park T; Yoon S; Jung J; Kwon TH
    Environ Sci Technol; 2020 Dec; 54(23):15355-15365. PubMed ID: 33186009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Oil Composition, Rock Mineralogy, Aging Time, and Brine Pre-soak on Shale Wettability.
    Saputra IWR; Adebisi O; Ladan EB; Bagareddy A; Sarmah A; Schechter DS
    ACS Omega; 2022 Jan; 7(1):85-100. PubMed ID: 35036681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic Interactions at the Crude Oil-Brine-Rock Interfaces Using Different Surface Complexation Models and DLVO Theory: Application to Carbonate Wettability.
    Tetteh JT; Barimah R; Korsah PK
    ACS Omega; 2022 Mar; 7(8):7199-7212. PubMed ID: 35252710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-scale origins of wettability at petroleum-brine-carbonate interfaces.
    Fenter P; Qin T; Lee SS; AlOtaibi MB; Ayirala S; Yousef AA
    Sci Rep; 2020 Nov; 10(1):20507. PubMed ID: 33239747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic observations of enhanced oil recovery and associated changes at carbonate-brine and carbonate-petroleum interfaces.
    Qin T; Fenter P; AlOtaibi M; Ayirala S; Yousef A
    Sci Rep; 2023 Oct; 13(1):16891. PubMed ID: 37803020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, Thermodynamics, and Dynamics of Thin Brine Films in Oil-Brine-Rock Systems.
    Fang C; Sun S; Qiao R
    Langmuir; 2019 Aug; 35(32):10341-10353. PubMed ID: 31328522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AFM study of mineral wettability with reservoir oils.
    Kumar K; Dao E; Mohanty KK
    J Colloid Interface Sci; 2005 Sep; 289(1):206-17. PubMed ID: 16009229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface chemistry of silica nanoparticles on contact angle of oil on calcite surfaces in concentrated brine with divalent ions.
    Alzobaidi S; Wu P; Da C; Zhang X; Hackbarth J; Angeles T; Rabat-Torki NJ; MacAuliffe S; Panja S; Johnston KP
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):656-668. PubMed ID: 32814189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability alteration of oil-wet carbonate by silica nanofluid.
    Al-Anssari S; Barifcani A; Wang S; Maxim L; Iglauer S
    J Colloid Interface Sci; 2016 Jan; 461():435-442. PubMed ID: 26414426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Evidence of Salinity and pH Effects on the Interfacial Interactions of Asphaltene-Brine-Silica Systems.
    Liu F; Yang H; Chen T; Zhang S; Yu D; Chen Y; Xie Q
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32182670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Molecular Dynamics Simulation to Investigate Oil Adsorption and Detachment from Sandstone/Quartz Surface by Low-Salinity Surfactant Brines.
    Maiki EP; Sun R; Ren S; AlRassas AM
    ACS Omega; 2024 May; 9(18):20277-20292. PubMed ID: 38737054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling CO
    Liang Y; Tsuji S; Jia J; Tsuji T; Matsuoka T
    Acc Chem Res; 2017 Jul; 50(7):1530-1540. PubMed ID: 28661135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity.
    Giordano TH
    Geochem Trans; 2002; 3():56. PubMed ID: 35412757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of salinity, Mg
    Song J; Wang Q; Shaik I; Puerto M; Bikkina P; Aichele C; Biswal SL; Hirasaki GJ
    J Colloid Interface Sci; 2020 Mar; 563():145-155. PubMed ID: 31874304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigation on the Interfacial Characteristics of Tight Oil Rocks Induced by Tuning Brine Chemistry.
    Cheng Z; Tong S; Wang D; Luo K; Dou L; Yue Y
    ACS Omega; 2024 Jul; 9(28):30654-30664. PubMed ID: 39035926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and estimation of CO
    Mutailipu M; Liu Y; Jiang L; Zhang Y
    J Colloid Interface Sci; 2019 Jan; 534():605-617. PubMed ID: 30265988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.