These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30821744)

  • 1. Local wavefront mapping in tissue using computational adaptive optics OCT.
    South FA; Liu YZ; Huang PC; Kohlfarber T; Boppart SA
    Opt Lett; 2019 Mar; 44(5):1186-1189. PubMed ID: 30821744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined hardware and computational optical wavefront correction.
    South FA; Kurokawa K; Liu Z; Liu YZ; Miller DT; Boppart SA
    Biomed Opt Express; 2018 Jun; 9(6):2562-2574. PubMed ID: 30258673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based sensor-less wavefront aberration correction in optical coherence tomography.
    Verstraete HR; Wahls S; Kalkman J; Verhaegen M
    Opt Lett; 2015 Dec; 40(24):5722-5. PubMed ID: 26670496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavefront measurement using computational adaptive optics.
    South FA; Liu YZ; Bower AJ; Xu Y; Carney PS; Boppart SA
    J Opt Soc Am A Opt Image Sci Vis; 2018 Mar; 35(3):466-473. PubMed ID: 29522050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo deep tissue imaging using wavefront shaping optical coherence tomography.
    Yu H; Lee P; Lee K; Jang J; Lim J; Jang W; Jeong Y; Park Y
    J Biomed Opt; 2016 Oct; 21(10):101406. PubMed ID: 26895566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging.
    Jian Y; Zawadzki RJ; Sarunic MV
    J Biomed Opt; 2013 May; 18(5):56007. PubMed ID: 23644903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational adaptive optics for polarization-sensitive optical coherence tomography.
    Wang J; Chaney EJ; Aksamitiene E; Marjanovic M; Boppart SA
    Opt Lett; 2021 May; 46(9):2071-2074. PubMed ID: 33929421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography.
    Yu H; Lee P; Jo Y; Lee K; Tuchin VV; Jeong Y; Park Y
    J Biomed Opt; 2016 Dec; 21(12):121510. PubMed ID: 27792807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal imaging with optical coherence tomography and low-loss adaptive optics using a 2.8-mm beam size.
    Maddipatla R; Cervantes J; Otani Y; Cense B
    J Biophotonics; 2019 Jun; 12(6):e201800192. PubMed ID: 30328279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.
    Adie SG; Graf BW; Ahmad A; Carney PS; Boppart SA
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7175-80. PubMed ID: 22538815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coaxial Bright and Dark Field Optical Coherence Tomography.
    Wang Y; Chen S; Chen X; Xu Z; Lin K; Shi L; Mu Q; Liu L
    IEEE Trans Biomed Eng; 2024 Jun; 71(6):1879-1888. PubMed ID: 38231824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
    Wong KS; Jian Y; Cua M; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2015 Feb; 6(2):580-90. PubMed ID: 25780747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards model-based adaptive optics optical coherence tomography.
    Verstraete HR; Cense B; Bilderbeek R; Verhaegen M; Kalkman J
    Opt Express; 2014 Dec; 22(26):32406-18. PubMed ID: 25607203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computed optical coherence microscopy of mouse brain ex vivo.
    Wu M; Small DM; Nishimura N; Adie SG
    J Biomed Opt; 2019 Nov; 24(11):1-18. PubMed ID: 31773937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Coherence Microscopy.
    Leitgeb RA
    Methods Mol Biol; 2017; 1563():167-182. PubMed ID: 28324609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive optics assisted and optical coherence tomography guided fs-laser system for ophthalmic surgery in the posterior eye.
    Matthias B; Zabic M; Brockmann D; Krüger A; Ripken T
    J Biomed Opt; 2016 Dec; 21(12):121512. PubMed ID: 27973664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple approach for aberration-corrected OCT imaging of the human retina.
    Sudkamp H; Hillmann D; Koch P; Endt MV; Spahr H; Münst M; Pfäffle C; Birngruber R; Hüttmann G
    Opt Lett; 2018 Sep; 43(17):4224-4227. PubMed ID: 30160757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth-resolved optimization of a real-time sensorless adaptive optics optical coherence tomography.
    Camino A; Ng R; Huang J; Guo Y; Ni S; Jia Y; Huang D; Jian Y
    Opt Lett; 2020 May; 45(9):2612-2615. PubMed ID: 32356829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.