These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30821762)

  • 41. Highly stable, 54mJ Yb-InnoSlab laser platform at 0.5kW average power.
    Schmidt BE; Hage A; Mans T; Légaré F; Wörner HJ
    Opt Express; 2017 Jul; 25(15):17549-17555. PubMed ID: 28789246
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High repetition rate 102  W middle infrared ZnGeP
    Qian CP; Yao BQ; Zhao BR; Liu GY; Duan XM; Dai TY; Ju YL; Wang YZ
    Opt Lett; 2019 Feb; 44(3):715-718. PubMed ID: 30702718
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 80-W single-frequency Innoslab µs-amplifier at 1319 nm with high efficiency.
    Zhang X; Ye J; Chen X; Luo X; Zhang L; Lu Y; Shang J; Gao Q; Wang W
    Opt Express; 2023 Jul; 31(16):26757-26763. PubMed ID: 37710527
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 400W Yb:YAG Innoslab fs-Amplifier.
    Russbueldt P; Mans T; Rotarius G; Weitenberg J; Hoffmann HD; Poprawe R
    Opt Express; 2009 Jul; 17(15):12230-45. PubMed ID: 19654625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compact OPCPA system seeded by a Cr:ZnS laser for generating tunable femtosecond pulses in the MWIR.
    Fuertjes P; von Grafenstein L; Ueberschaer D; Mei C; Griebner U; Elsaesser T
    Opt Lett; 2021 Apr; 46(7):1704-1707. PubMed ID: 33793523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-efficiency 940- and 969-nm brightness-maintaining wavelength-multiplexed LD-pumped 240-W thin-rod Yb:YAG amplifier.
    Wang S; Cong Z; Liu J; Zhang X; Zhao Z; Liu Z
    Opt Lett; 2022 Apr; 47(8):2113-2116. PubMed ID: 35427350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm.
    Negel JP; Loescher A; Voss A; Bauer D; Sutter D; Killi A; Ahmed MA; Graf T
    Opt Express; 2015 Aug; 23(16):21064-77. PubMed ID: 26367957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier.
    Ahrens J; Prochnow O; Binhammer T; Lang T; Schulz B; Frede M; Morgner U
    Opt Express; 2016 Apr; 24(8):8074-80. PubMed ID: 27137246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Final amplifier of an ultra-intense all-OPCPA system with 13-J output signal energy and 41% pump-to-signal conversion efficiency.
    Begishev IA; Dorrer C; Bahk SW; Bucht S; Feng C; Guardalben MJ; Jeon C; Mileham C; Roides RG; Spilatro M; Webb B; Weiner D; Zuegel JD; Bromage J
    Opt Express; 2023 Jul; 31(15):24785-24795. PubMed ID: 37475297
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High power burst-mode optical parametric amplifier with arbitrary pulse selection.
    Pergament M; Kellert M; Kruse K; Wang J; Palmer G; Wissmann L; Wegner U; Lederer MJ
    Opt Express; 2014 Sep; 22(18):22202-10. PubMed ID: 25321596
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier.
    Chang CL; Krogen P; Hong KH; Zapata LE; Moses J; Calendron AL; Liang H; Lai CJ; Stein GJ; Keathley PD; Laurent G; Kärtner FX
    Opt Express; 2015 Apr; 23(8):10132-44. PubMed ID: 25969056
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design considerations for a high power, ultrabroadband optical parametric chirped-pulse amplifier.
    Prandolini MJ; Riedel R; Schulz M; Hage A; Höppner H; Tavella F
    Opt Express; 2014 Jan; 22(2):1594-607. PubMed ID: 24515165
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Active pump-seed-pulse synchronization for OPCPA with sub-2-fs residual timing jitter.
    Prinz S; Häfner M; Schultze M; Teisset CY; Bessing R; Michel K; Kienberger R; Metzger T
    Opt Express; 2014 Dec; 22(25):31050-6. PubMed ID: 25607054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Signal-to-idler energy conversion from 1.9 to 2.3 µm by transient stimulated Raman chirped-pulse amplification.
    Petrulenas A; Mackonis P; Rodin AM
    Opt Lett; 2023 Apr; 48(7):1598-1601. PubMed ID: 37221719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Femtosecond wavelength-tunable OPCPA system based on picosecond fiber laser seed and picosecond DPSS laser pump.
    Danilevičius R; Zaukevičius A; Budriūnas R; Michailovas A; Rusteika N
    Opt Express; 2016 Jul; 24(15):17532-40. PubMed ID: 27464199
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mid-infrared pulse generation via achromatic quasi-phase-matched OPCPA.
    Mayer BW; Phillips CR; Gallmann L; Keller U
    Opt Express; 2014 Aug; 22(17):20798-808. PubMed ID: 25321283
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient generation of femtosecond millijoule pulses at 3.1 µm.
    Zhou F; Wu Y; Marra A; Chang Z
    Opt Lett; 2022 Dec; 47(23):6057-6060. PubMed ID: 37219171
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High power picosecond parametric mid-IR source tunable between 1.7 and 2.6  μm.
    Vyvlečka M; Novák O; Smrž M; Mocek T
    Appl Opt; 2018 Oct; 57(28):8412-8417. PubMed ID: 30461796
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping.
    Yin Y; Chew A; Ren X; Li J; Wang Y; Wu Y; Chang Z
    Sci Rep; 2017 Apr; 8():45794. PubMed ID: 28367966
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sub-4 fs laser pulses at high average power and high repetition rate from an all-solid-state setup.
    Lu CH; Witting T; Husakou A; Vrakking MJJ; Kung AH; Furch FJ
    Opt Express; 2018 Apr; 26(7):8941-8956. PubMed ID: 29715854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.