These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30821771)

  • 21. Low loss GaN waveguides at the visible spectral wavelengths for integrated photonics applications.
    Chen H; Fu H; Huang X; Zhang X; Yang TH; Montes JA; Baranowski I; Zhao Y
    Opt Express; 2017 Dec; 25(25):31758-31773. PubMed ID: 29245846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degenerate four-wave mixing in silicon hybrid plasmonic waveguides.
    Duffin TJ; Nielsen MP; Diaz F; Palomba S; Maier SA; Oulton RF
    Opt Lett; 2016 Jan; 41(1):155-8. PubMed ID: 26696182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silicon/silicon-rich nitride hybrid-core waveguide for nonlinear optics.
    Wang X; Guan X; Gao S; Hu H; Oxenløwe LK; Frandsen LH
    Opt Express; 2019 Aug; 27(17):23775-23784. PubMed ID: 31510277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Q titanium dioxide micro-ring resonators for integrated nonlinear photonics.
    Fu M; Zheng Y; Li G; Hu H; Pu M; Oxenløwe LK; Frandsen LH; Li X; Guan X
    Opt Express; 2020 Dec; 28(26):39084-39092. PubMed ID: 33379466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ge-rich graded-index Si
    Ramirez JM; Vakarin V; Frigerio J; Chaisakul P; Chrastina D; Le Roux X; Ballabio A; Vivien L; Isella G; Marris-Morini D
    Opt Express; 2017 Mar; 25(6):6561-6567. PubMed ID: 28381003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dispersion engineering of highly nonlinear As(2)S(3) waveguides for parametric gain and wavelength conversion.
    Lamont MR; de Sterke CM; Eggleton BJ
    Opt Express; 2007 Jul; 15(15):9458-63. PubMed ID: 19547292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Q tellurium-oxide-coated silicon nitride microring resonators.
    Frankis HC; Kiani KM; Su D; Mateman R; Leinse A; Bradley JDB
    Opt Lett; 2019 Jan; 44(1):118-121. PubMed ID: 30645557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultralow-loss tightly confining Si
    El Dirani H; Youssef L; Petit-Etienne C; Kerdiles S; Grosse P; Monat C; Pargon E; Sciancalepore C
    Opt Express; 2019 Oct; 27(21):30726-30740. PubMed ID: 31684316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-low-power four-wave mixing wavelength conversion in high-Q chalcogenide microring resonators.
    Jiang WC; Li K; Gai X; Nolan DA; Dainese P
    Opt Lett; 2021 Jun; 46(12):2912-2915. PubMed ID: 34129572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable frequency matching for efficient four-wave-mixing Bragg scattering in microrings.
    Liu J; Zheng Q; Xia G; Wu C; Zhu Z; Xu P
    Opt Express; 2021 Oct; 29(22):36038-36047. PubMed ID: 34809024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-optical logic operation of polarized light signals in highly nonlinear silicon hybrid plasmonic microring resonators.
    Dai J; Zhang M; Zhou F; Wang Y; Lu L; Liu D
    Appl Opt; 2015 May; 54(14):4471-7. PubMed ID: 25967504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AlGaAs-on-insulator waveguide for highly efficient photon-pair generation via spontaneous four-wave mixing.
    Mahmudlu H; May S; Angulo A; Sorel M; Kues M
    Opt Lett; 2021 Mar; 46(5):1061-1064. PubMed ID: 33649657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wavelength conversion in highly nonlinear silicon-organic hybrid slot waveguides.
    An L; Liu H; Sun Q; Huang N; Wang Z
    Appl Opt; 2014 Aug; 53(22):4886-93. PubMed ID: 25090318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear silicon nitride waveguides based on a PECVD deposition platform.
    Wang L; Xie W; Van Thourhout D; Zhang Y; Yu H; Wang S
    Opt Express; 2018 Apr; 26(8):9645-9654. PubMed ID: 29715913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum.
    Lu TJ; Fanto M; Choi H; Thomas P; Steidle J; Mouradian S; Kong W; Zhu D; Moon H; Berggren K; Kim J; Soltani M; Preble S; Englund D
    Opt Express; 2018 Apr; 26(9):11147-11160. PubMed ID: 29716039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides.
    Carlson DR; Hickstein DD; Lind A; Droste S; Westly D; Nader N; Coddington I; Newbury NR; Srinivasan K; Diddams SA; Papp SB
    Opt Lett; 2017 Jun; 42(12):2314-2317. PubMed ID: 28614340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved broadband dispersion engineering in coupled silicon nitride waveguides with a partially etched gap.
    Yao Z; Wan Y; Bu R; Zheng Z
    Appl Opt; 2019 Oct; 58(29):8007-8012. PubMed ID: 31674354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sub-micron silicon nitride waveguide fabrication using conventional optical lithography.
    Huang Y; Zhao Q; Kamyab L; Rostami A; Capolino F; Boyraz O
    Opt Express; 2015 Mar; 23(5):6780-6. PubMed ID: 25836896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides.
    Suzuki K; Baba T
    Opt Express; 2010 Dec; 18(25):26675-85. PubMed ID: 21165018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides.
    Choi JW; Chen GF; Ng DK; Ooi KJ; Tan DT
    Sci Rep; 2016 Jun; 6():27120. PubMed ID: 27272558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.