These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30821771)

  • 41. Reverse pillar chalcogenide glass waveguides with ultraflat and low dispersion profile over an ultrawide bandwidth.
    Shi Y; Xu P; Shen X; Dai S; Nie Q
    Appl Opt; 2016 Feb; 55(5):1017-21. PubMed ID: 26906369
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths.
    Guo Y; Jafari Z; Agarwal AM; Kimerling LC; Li G; Michel J; Zhang L
    Opt Lett; 2016 Nov; 41(21):4939-4942. PubMed ID: 27805655
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-order dispersion engineering for optimal four-wave mixing.
    Lamont MR; Kuhlmey BT; de Sterke CM
    Opt Express; 2008 May; 16(10):7551-63. PubMed ID: 18545460
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.
    Matsuda N; Kato T; Harada K; Takesue H; Kuramochi E; Taniyama H; Notomi M
    Opt Express; 2011 Oct; 19(21):19861-74. PubMed ID: 21996994
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photonic crystal waveguides on silicon rich nitride platform.
    Debnath K; Bucio TD; Al-Attili A; Khokhar AZ; Saito S; Gardes FY
    Opt Express; 2017 Feb; 25(4):3214-3221. PubMed ID: 28241537
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Group-velocity-dispersion engineering of tantala integrated photonics.
    Black JA; Streater R; Lamee KF; Carlson DR; Yu SP; Papp SB
    Opt Lett; 2021 Feb; 46(4):817-820. PubMed ID: 33577521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dispersion Engineering of Silicon Nitride Microresonators via Reconstructable SU-8 Polymer Cladding.
    Wang SP; Lee TH; Chen YY; Wang PH
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334746
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics.
    Pernice WH; Xiong C; Tang HX
    Opt Express; 2012 May; 20(11):12261-9. PubMed ID: 22714215
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications.
    Muñoz P; Micó G; Bru LA; Pastor D; Pérez D; Doménech JD; Fernández J; Baños R; Gargallo B; Alemany R; Sánchez AM; Cirera JM; Mas R; Domínguez C
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28895906
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Harmonic generation in silicon nitride ring resonators.
    Levy JS; Foster MA; Gaeta AL; Lipson M
    Opt Express; 2011 Jun; 19(12):11415-21. PubMed ID: 21716372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Second- and third-order nonlinear wavelength conversion in an all-optically poled Si
    Grassani D; Pfeiffer MHP; Kippenberg TJ; Brès CS
    Opt Lett; 2019 Jan; 44(1):106-109. PubMed ID: 30645554
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range.
    Dave UD; Kuyken B; Leo F; Gorza SP; Combrie S; De Rossi A; Raineri F; Roelkens G
    Opt Express; 2015 Feb; 23(4):4650-7. PubMed ID: 25836502
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering chromatic dispersion and effective nonlinearity in a dual-slot waveguide.
    Liu Y; Yan J; Han G
    Appl Opt; 2014 Sep; 53(27):6302-6. PubMed ID: 25322111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Compact suspended silicon microring resonators with ultrahigh quality.
    Jiang WC; Zhang J; Lin Q
    Opt Express; 2014 Jan; 22(1):1187-92. PubMed ID: 24515079
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Observation of Stimulated Brillouin Scattering in Silicon Nitride Integrated Waveguides.
    Gyger F; Liu J; Yang F; He J; Raja AS; Wang RN; Bhave SA; Kippenberg TJ; Thévenaz L
    Phys Rev Lett; 2020 Jan; 124(1):013902. PubMed ID: 31976733
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides.
    Duchesne D; Ferrera M; Razzari L; Morandotti R; Little BE; Chu ST; Moss DJ
    Opt Express; 2009 Feb; 17(3):1865-70. PubMed ID: 19189017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Silicon nitride based plasmonic components for CMOS back-end-of-line integration.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2013 Oct; 21(20):23376-90. PubMed ID: 24104251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hybridization of circular and rectangular transverse profiles of nanophotonic modes for nonlinear optics.
    Lu X; Jiang WC; Srinivasan K
    Opt Lett; 2021 Jun; 46(11):2682-2685. PubMed ID: 34061087
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimal waveguide dimensions for nonlinear interactions.
    Foster M; Moll K; Gaeta A
    Opt Express; 2004 Jun; 12(13):2880-7. PubMed ID: 19483803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides.
    Apiratikul P; Wathen JJ; Porkolab GA; Wang B; He L; Murphy TE; Richardson CJ
    Opt Express; 2014 Nov; 22(22):26814-24. PubMed ID: 25401828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.