These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30821781)

  • 21. Bifunctional MoO
    Dong W; Lv Y; Xiao L; Fan Y; Zhang N; Liu X
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33842-33847. PubMed ID: 27960371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactive Sputter Deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices.
    Yin Y; Lan C; Guo H; Li C
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3861-7. PubMed ID: 26726834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Voltage-Tunable Dual Image of Electrostatic Force-Assisted Dispensing Printed, Tungsten Trioxide-Based Electrochromic Devices with a Symmetric Configuration.
    Li X; Yun TY; Kim KW; Kim SH; Moon HC
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4022-4030. PubMed ID: 31880422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties.
    Ou JZ; Balendhran S; Field MR; McCulloch DG; Zoolfakar AS; Rani RA; Zhuiykov S; O'Mullane AP; Kalantar-Zadeh K
    Nanoscale; 2012 Sep; 4(19):5980-8. PubMed ID: 22906993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation Dynamics for Electrochromic WO
    Wen RT; Malmgren S; Granqvist CG; Niklasson GA
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12872-12877. PubMed ID: 28328195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchical NiO microflake films with high coloration efficiency, cyclic stability and low power consumption for applications in a complementary electrochromic device.
    Ma D; Shi G; Wang H; Zhang Q; Li Y
    Nanoscale; 2013 Jun; 5(11):4808-15. PubMed ID: 23613080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide.
    Li G; Zhang S; Guo C; Liu S
    Nanoscale; 2016 May; 8(18):9861-8. PubMed ID: 27119556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochromic and optical properties of tungsten oxide films deposited with DC sputtering by introducing hydrogen.
    Chen HC; Jan DJ; Luo YS; Huang KT
    Appl Opt; 2014 Feb; 53(4):A321-9. PubMed ID: 24514234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Full-Color-Tunable Nanophotonic Device Using Electrochromic Tungsten Trioxide Thin Film.
    Lee Y; Yun J; Seo M; Kim SJ; Oh J; Kang CM; Sun HJ; Chung TD; Lee B
    Nano Lett; 2020 Aug; 20(8):6084-6090. PubMed ID: 32603122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochromic behavior of W(x)Si(y)O(z) thin films prepared by reactive magnetron sputtering at normal and glancing angles.
    Gil-Rostra J; Cano M; Pedrosa JM; Ferrer FJ; García-García F; Yubero F; González-Elipe AR
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):628-38. PubMed ID: 22208156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transmission and reflection ellipsometry of thin films and multilayer systems.
    Bader G; Ashrit PV; Truong VV
    Appl Opt; 1998 Mar; 37(7):1146-51. PubMed ID: 18268697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochromic Properties of NiO
    Qiu J; Chen Z; Zhao T; Chen Z; Chu W; Yuan N; Ding J
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4222-4229. PubMed ID: 29442766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance.
    Brezesinski T; Rohlfing DF; Sallard S; Antonietti M; Smarsly BM
    Small; 2006 Oct; 2(10):1203-11. PubMed ID: 17193590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of WO
    Svensson FG; Uchiyama H
    Chempluschem; 2024 Jul; ():e202400281. PubMed ID: 38979692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films.
    Liu X; Zhou A; Dou Y; Pan T; Shao M; Han J; Wei M
    Nanoscale; 2015 Oct; 7(40):17088-95. PubMed ID: 26420230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White.
    Bi Z; Li X; Chen Y; He X; Xu X; Gao X
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29872-29880. PubMed ID: 28809104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical Simulation Model of WO
    Zhang G; Guo K; Shen X; Ning H; Liang H; Zhong J; Xu W; Tang B; Yao R; Peng J
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4768-4776. PubMed ID: 33445866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Galvanostatic Rejuvenation of Electrochromic WO
    Baloukas B; Arvizu MA; Wen RT; Niklasson GA; Granqvist CG; Vernhes R; Klemberg-Sapieha JE; Martinu L
    ACS Appl Mater Interfaces; 2017 May; 9(20):16995-17001. PubMed ID: 28485953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.
    Zhu T; Chong MN; Chan ES
    ChemSusChem; 2014 Nov; 7(11):2974-97. PubMed ID: 25274424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation.
    Zhou D; Xie D; Shi F; Wang DH; Ge X; Xia XH; Wang XL; Gu CD; Tu JP
    J Colloid Interface Sci; 2015 Dec; 460():200-8. PubMed ID: 26321573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.