These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30821795)

  • 1. The impact of optically rectified fields on plasmonic electrocatalysis.
    Nelson DA; Schultz ZD
    Faraday Discuss; 2019 May; 214(0):465-477. PubMed ID: 30821795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis.
    Li S; Miao P; Zhang Y; Wu J; Zhang B; Du Y; Han X; Sun J; Xu P
    Adv Mater; 2021 Feb; 33(6):e2000086. PubMed ID: 32201994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.
    Dao TD; Han G; Arai N; Nabatame T; Wada Y; Hoang CV; Aono M; Nagao T
    Phys Chem Chem Phys; 2015 Mar; 17(11):7395-403. PubMed ID: 25700130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
    Fang Y; Wang H; Yu H; Liu X; Wang W; Chen HY; Tao NJ
    Acc Chem Res; 2016 Nov; 49(11):2614-2624. PubMed ID: 27662069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-selective CO disproportionation mediated by localized surface plasmon resonance excited by electron beam.
    Yang WD; Wang C; Fredin LA; Lin PA; Shimomoto L; Lezec HJ; Sharma R
    Nat Mater; 2019 Jun; 18(6):614-619. PubMed ID: 30988449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles.
    Wang C; Nie XG; Shi Y; Zhou Y; Xu JJ; Xia XH; Chen HY
    ACS Nano; 2017 Jun; 11(6):5897-5905. PubMed ID: 28494145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of electron tunneling across plasmonic nanoparticle-film junctions using nitrile vibrations.
    Wang H; Yao K; Parkhill JA; Schultz ZD
    Phys Chem Chem Phys; 2017 Feb; 19(8):5786-5796. PubMed ID: 28180214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-Impact Single-Entity Electrochemistry Enables Plasmon-Enhanced Electrocatalysis.
    Ganguli S; Zhao Z; Parlak O; Hattori Y; Sá J; Sekretareva A
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202302394. PubMed ID: 37078401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis.
    Boerigter C; Campana R; Morabito M; Linic S
    Nat Commun; 2016 Jan; 7():10545. PubMed ID: 26817619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-Mediated Intramolecular Methyl Migration with Nanoscale Spatial Control.
    Brooks JL; Warkentin CL; Chulhai DV; Goodpaster JD; Frontiera RR
    ACS Nano; 2020 Dec; 14(12):17194-17202. PubMed ID: 33296172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallic Heterostructures for Plasmon-Enhanced Electrocatalysis.
    Wu F; Xia S; Wei J; Gao W; Li F; Niu W
    Chemphyschem; 2023 Aug; 24(15):e202200881. PubMed ID: 37093151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag/Ag2SO3 plasmonic catalysts with high activity and stability for CO2 reduction with water vapor under visible light.
    Wang D; Yu Y; Zhang Z; Fang H; Chen J; He Z; Song S
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18369-78. PubMed ID: 27282369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl.
    Jiang J; Zhang L; Li H; He W; Yin JJ
    Nanoscale; 2013 Nov; 5(21):10573-81. PubMed ID: 24056871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis.
    Aslam U; Chavez S; Linic S
    Nat Nanotechnol; 2017 Oct; 12(10):1000-1005. PubMed ID: 28737751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies.
    Arielly R; Ofarim A; Noy G; Selzer Y
    Nano Lett; 2011 Jul; 11(7):2968-72. PubMed ID: 21678941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances.
    Huang J; Zhu Y; Liu C; Zhao Y; Liu Z; Hedhili MN; Fratalocchi A; Han Y
    Small; 2015 Oct; 11(39):5214-21. PubMed ID: 26270384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible light driven plasmonic photochemistry on nano-textured silver.
    Walia J; Guay JM; Krupin O; Variola F; Berini P; Weck A
    Phys Chem Chem Phys; 2017 Dec; 20(1):238-246. PubMed ID: 29199757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.