These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 30821797)
1. Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons. Dutta A; Naldoni A; Malara F; Govorov AO; Shalaev VM; Boltasseva A Faraday Discuss; 2019 May; 214():283-295. PubMed ID: 30821797 [TBL] [Abstract][Full Text] [Related]
2. Harvesting the lost photon by plasmonic enhanced hematite-upconversion nanocomposite for water splitting. Jiang Q; Xie X; Riley DJ; Xie F J Chem Phys; 2020 Jul; 153(1):011102. PubMed ID: 32640826 [TBL] [Abstract][Full Text] [Related]
3. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Li J; Cushing SK; Zheng P; Meng F; Chu D; Wu N Nat Commun; 2013; 4():2651. PubMed ID: 24136178 [TBL] [Abstract][Full Text] [Related]
4. Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells. Ramadurgam S; Lin TG; Yang C Nano Lett; 2014 Aug; 14(8):4517-22. PubMed ID: 24971707 [TBL] [Abstract][Full Text] [Related]
5. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. Chen HM; Chen CK; Chen CJ; Cheng LC; Wu PC; Cheng BH; Ho YZ; Tseng ML; Hsu YY; Chan TS; Lee JF; Liu RS; Tsai DP ACS Nano; 2012 Aug; 6(8):7362-72. PubMed ID: 22849358 [TBL] [Abstract][Full Text] [Related]
6. On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films. Iandolo B; Antosiewicz TJ; Hellman A; Zorić I Phys Chem Chem Phys; 2013 Apr; 15(14):4947-54. PubMed ID: 23439980 [TBL] [Abstract][Full Text] [Related]
7. Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts. Zheng Z; Xie W; Huang B; Dai Y Chemistry; 2018 Dec; 24(69):18322-18333. PubMed ID: 30183119 [TBL] [Abstract][Full Text] [Related]
8. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Tamirat AG; Rick J; Dubale AA; Su WN; Hwang BJ Nanoscale Horiz; 2016 Jul; 1(4):243-267. PubMed ID: 32260645 [TBL] [Abstract][Full Text] [Related]
9. Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. Gao H; Liu C; Jeong HE; Yang P ACS Nano; 2012 Jan; 6(1):234-40. PubMed ID: 22147636 [TBL] [Abstract][Full Text] [Related]
10. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation. Kment S; Schmuki P; Hubicka Z; Machala L; Kirchgeorg R; Liu N; Wang L; Lee K; Olejnicek J; Cada M; Gregora I; Zboril R ACS Nano; 2015 Jul; 9(7):7113-23. PubMed ID: 26083741 [TBL] [Abstract][Full Text] [Related]
11. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting. Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784 [TBL] [Abstract][Full Text] [Related]
12. Ultrathin planar hematite film for solar photoelectrochemical water splitting. Liu D; Bierman DM; Lenert A; Yu HT; Yang Z; Wang EN; Duan YY Opt Express; 2015 Nov; 23(24):A1491-8. PubMed ID: 26698797 [TBL] [Abstract][Full Text] [Related]
13. Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting. Zhang L; Herrmann LO; Baumberg JJ Sci Rep; 2015 Nov; 5():16660. PubMed ID: 26581942 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of CuFe Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650 [TBL] [Abstract][Full Text] [Related]
15. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207 [TBL] [Abstract][Full Text] [Related]
16. Perovskite solar cell for photocatalytic water splitting with a TiO Roy S; Botte GG RSC Adv; 2018 Jan; 8(10):5388-5394. PubMed ID: 35542422 [TBL] [Abstract][Full Text] [Related]
17. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature. Cho ES; Kang MJ; Kang YS Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403 [TBL] [Abstract][Full Text] [Related]
18. Iron based photoanodes for solar fuel production. Bassi PS; Gurudayal ; Wong LH; Barber J Phys Chem Chem Phys; 2014 Jun; 16(24):11834-42. PubMed ID: 24469680 [TBL] [Abstract][Full Text] [Related]
19. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. Qiu Y; Leung SF; Zhang Q; Hua B; Lin Q; Wei Z; Tsui KH; Zhang Y; Yang S; Fan Z Nano Lett; 2014; 14(4):2123-9. PubMed ID: 24601797 [TBL] [Abstract][Full Text] [Related]
20. TiO2 and Fe2O3 films for photoelectrochemical water splitting. Krysa J; Zlamal M; Kment S; Brunclikova M; Hubicka Z Molecules; 2015 Jan; 20(1):1046-58. PubMed ID: 25584834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]