These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30821847)

  • 1. Neuropeptidomics: Comparison of parallel reaction monitoring and data-independent acquisition for the analysis of neuropeptides using high-resolution mass spectrometry.
    Saidi M; Kamali S; Beaudry F
    Biomed Chromatogr; 2019 Jul; 33(7):e4523. PubMed ID: 30821847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry.
    Rauniyar N
    Int J Mol Sci; 2015 Dec; 16(12):28566-81. PubMed ID: 26633379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification, characterization and quantification of specific neuropeptides in rat spinal cord by liquid chromatography electrospray quadrupole ion trap mass spectrometry.
    Beaudry F; Ferland CE; Vachon P
    Biomed Chromatogr; 2009 Sep; 23(9):940-50. PubMed ID: 19358311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical considerations for large-scale parallel reaction monitoring analysis.
    Gallien S; Bourmaud A; Kim SY; Domon B
    J Proteomics; 2014 Apr; 100():147-59. PubMed ID: 24200835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing quantitative assays for six urinary glycoproteins using parallel reaction monitoring, data-independent acquisition, and TMT-based data-dependent acquisition.
    Ponce S; Zhang H
    Proteomics; 2023 Apr; 23(7-8):e2200072. PubMed ID: 36592098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.
    Kockmann T; Trachsel C; Panse C; Wahlander A; Selevsek N; Grossmann J; Wolski WE; Schlapbach R
    Proteomics; 2016 Aug; 16(15-16):2183-92. PubMed ID: 27130639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted high-resolution quadrupole-Orbitrap mass spectrometry analyses reveal a significant reduction of tachykinin and opioid neuropeptides level in PC1 and PC2 mutant mouse spinal cords.
    Saidi M; Beaudry F
    Neuropeptides; 2017 Oct; 65():37-44. PubMed ID: 28476408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.
    Vidova V; Spacil Z
    Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications.
    Bourmaud A; Gallien S; Domon B
    Proteomics; 2016 Aug; 16(15-16):2146-59. PubMed ID: 27145088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM).
    Gallien S; Kim SY; Domon B
    Mol Cell Proteomics; 2015 Jun; 14(6):1630-44. PubMed ID: 25755295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of multiple reaction monitoring cubed for the analysis of tachykinin related peptides in rat spinal cord using a hybrid triple quadrupole-linear ion trap mass spectrometer.
    Pailleux F; Beaudry F
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Feb; 947-948():164-7. PubMed ID: 24434561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in high-resolution quantitative proteomics: implications for clinical applications.
    Gallien S; Domon B
    Expert Rev Proteomics; 2015; 12(5):489-98. PubMed ID: 26189960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and quantification of neuropeptides in naïve mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception.
    Su J; Sandor K; Sköld K; Hökfelt T; Svensson CI; Kultima K
    J Neurochem; 2014 Jul; 130(2):199-214. PubMed ID: 24749662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High identification rates of endogenous neuropeptides from mouse brain.
    Zhang X; Petruzziello F; Zani F; Fouillen L; Andren PE; Solinas G; Rainer G
    J Proteome Res; 2012 May; 11(5):2819-27. PubMed ID: 22424378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical advances in proteomics: new developments in data-independent acquisition.
    Hu A; Noble WS; Wolf-Yadlin A
    F1000Res; 2016; 5():. PubMed ID: 27092249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering Protein Biomarkers from Clinical Peripheral Blood Mononuclear Cells Using Data-Independent Acquisition Mass Spectrometry.
    Ku X; Yan W
    Methods Mol Biol; 2019; 1959():151-161. PubMed ID: 30852821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer.
    Hoffman MA; Fang B; Haura EB; Rix U; Koomen JM
    J Proteome Res; 2018 Jan; 17(1):63-75. PubMed ID: 29164889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers.
    Tsou CC; Tsai CF; Teo GC; Chen YJ; Nesvizhskii AI
    Proteomics; 2016 Aug; 16(15-16):2257-71. PubMed ID: 27246681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of meat species adulteration using high-resolution mass spectrometry and a proteogenomics strategy.
    Ruiz Orduna A; Husby E; Yang CT; Ghosh D; Beaudry F
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jul; 34(7):1110-1120. PubMed ID: 28513289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry.
    Gallien S; Domon B
    Methods; 2015 Jun; 81():15-23. PubMed ID: 25843604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.